Analytical Correction of Banding Artifacts in Driven Equilibrium Single Pulse Observation of T2 (DESPOT2)

Jean-David Jutras¹, Keith Wachowicz^{1,2}, and Nicola DeZanche^{1,2}

¹Oncology, University of Alberta, Edmonton, AB, Canada, ²Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada

Purpose: The DESPOT2 (single-component) technique consists of varying the flip angle in bSSFP and solving for T_2 using the on-resonance bSSFP signal equation and previously-measured T_1 (e.g., DESPOT1) [1]. However, banding artifacts induced by B_0 inhomogeneity, especially at 3T and higher fields [2], result in bands of underestimated T_2 . A previous approach to correct this problem consists of acquiring 2 phase-cycled bSSFP images at 2 different flip angles and curve-fitting T_2 and off-resonance phase ϕ using a stochastic region contraction algorithm [2]. Here, we perform the same correction analytically and therefore more efficiently.

Theory: Because of off-resonance (Δf), the T₂ normally calculated from the linearized on-resonance bSSFP equation [1] becomes a reduced T₂ or " τ_2 " given by Eq. (2) below, where E₂=exp(-TR/T₂). Solving for τ_2 using bSSFP images at two or more flip angles and phase cycles (e.g., α_1/α_2 at phase cycle increment of $\Delta \phi_1$, and α_1/α_2 at $\Delta \phi_2$) separated by a phase-increment difference $\Delta \phi_2 - \Delta \phi_1 = \pi$, an exact solution for T₂ and ϕ can be written

$$T_{2} = -TR/\ln\left(\sqrt{\frac{2\varepsilon_{2}^{\Delta\phi_{1}}\varepsilon_{2}^{\Delta\phi_{2}} - \varepsilon_{2}^{\Delta\phi_{1}} - \varepsilon_{2}^{\Delta\phi_{2}}}{\varepsilon_{2}^{\Delta\phi_{1}} + \varepsilon_{2}^{\Delta\phi_{2}} - 2}}\right), \quad \cos(\phi - \Delta\phi_{1}) = \frac{\varepsilon_{2}^{\Delta\phi_{1}} - \varepsilon_{2}^{\Delta\phi_{2}}}{\sqrt{(\varepsilon_{2}^{\Delta\phi_{1}} + \varepsilon_{2}^{\Delta\phi_{2}} - 2)(2\varepsilon_{2}^{\Delta\phi_{1}}\varepsilon_{2}^{\Delta\phi_{1}} - \varepsilon_{2}^{\Delta\phi_{1}} - \varepsilon_{2}^{\Delta\phi_{2}})}}$$
(1a,b)

where $\varepsilon_2^{\Delta\phi} = \exp(-\text{TR}/\tau_2^{\Delta\phi})$, and $\phi = 2\pi \text{ TR } \Delta f$. Alternatively, an approximate weighted root-sum-of-squares (wRSS) solution for T₂ can also be derived for 3 or more phase cycles, assuming TR<<T₂, and only deviates by <1% in vivo (Eq. 3):

$$\tau_2(\phi, TR, T_2) = -TR / \ln\left(\frac{E_2 + \cos\phi}{E_2^{-1} + \cos\phi}\right), \quad (2) \quad T_2 \cong \sqrt{\frac{8}{3N}} \sqrt{\sum_{n=1}^N \left(\tau_2^{\Delta\phi_n}\right)^2}, \quad N \ge 3 \quad (3)$$

where N is the number of phase cycles used. Equation 3 yields more uniform T_2 -to-noise ratio (T2NR) than Eq. 1 (Figure 1).

Methods: The generalized DESPOT2 method was tested (without shimming) on a Philips 3T Achieva, on an agar phantom and on the brain of a healthy volunteer for two $(\Delta \phi=0, \pi)$, three $(\Delta \phi=0, 2\pi/3, 4\pi/3)$ and four $(\Delta \phi=0, \pi/2, \pi, 3\pi/2)$ phase cycles and $(\alpha_1/\alpha_2=13/65^\circ, TR/TE=4.6/2.3 \text{ ms}, BW=675 \text{ Hz/pix})$, thus totalling $6\times2=12$ datasets (<2 min each); T₁ was mapped using a 9-echo SPGR pulse sequence: TR/ $\Delta TE=33/2.3 \text{ ms}$, $\alpha_1/\alpha_2=5/28^\circ$, BW=517 Hz/pix, FOV=24×24×17 cm³ and voxel resolution: 1×1×1.5 mm³. Transmit B₁-inhomogeneity was corrected using Actual Flip Angle Imaging [3]. A gold-standard T₂ map was also measured in the phantom using a 10-echo CPMG pulse sequence (TR/ $\Delta TE = 2000/20 \text{ ms}$). Monte Carlo noise simulations were performed in MATLAB to verify the analytical prediction of T2NR as a function of ϕ .

Results and Discussion: The analytical predictions on T2NR (shown in Figure 1) agreed well with the simulations. While further work is underway to address the residual ripples (as seen in **Figure 2c & d**, and green ellipse in **3**), the generalized DESPOT2 technique agrees to within 7% of CPMG values within the range of $20 \le T_2 \le 200$ ms.

Conclusion: These analytical solutions yield 3D T₂ and ϕ maps in ~20 s and overcome the limitations of traditional DESPOT2. Applications include 3D structural brain and musculosceletal imaging where motion is not an issue.

References: [1] S. Deoni, B. Rutt, T. Peters. MRM 2003; 49(3):515-526. [2] S. Deoni. JMRI 2009; 30(2):411-417. [3] V. Yarnykh. MRM 2007; 57(1):192-200.

Figure 1: Predicted T2NR as a function of ϕ , for different numbers of phase cycles, $(T_1/\sigma_1/T_2=1000/10/70ms)$ and a bSSFP noise factor $\sigma/M_0=0.002$.

Acknowledgements: the Alberta Cancer Foundation for funding; GyroTools and Philips Healthcare for technical support.

Figure 2: τ_2 maps (left) and T_2 maps in phantom (middle & right). Note that (e) is an optimally weighted average of (c) and (d), while (f) is the approximate wRSS solution.

Figure 3: Relaxation times (in ms) in the brain of a volunteer (from left to-right: T_1 , τ_2 with $\Delta \phi = \pi$, T_2 with $\Delta \phi = \pi/2$, $3\pi/2$, and T_2 with $\Delta \phi = 0$, $\pi/2$, π , $3\pi/2$ (wRSS).