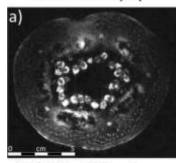
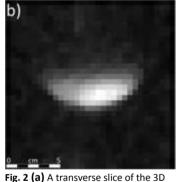
A 3 channel ³¹P and 2 channel ¹H coil array for ³¹P NMR in the visual cortex at 7 T

Sigrun Goluch^{1,2}, Andre Kuehne^{1,2}, Albrecht Ingo Schmid^{1,2}, Ewald Moser^{1,2}, and Elmar Laistler^{1,2}


¹MR Center of Excellence, Medical University of Vienna, Vienna, Austria, ²Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria

Target Audience: Researchers who are interested in RF coil array design for X-nuclei applications or ³¹P brain MRS


Purpose: Phosphorous spectroscopy in the occipital lobe may be used to investigate the ³¹P metabolism in the visual cortex and its changes during various conditions. Due to the inherently low relative sensitivity of ³¹P and its low abundance in the brain, the hardware for the application has to be optimized for detection sensitivity. Increasing the field strength to 7 T already results in higher sensitivity, increased spectral resolution and shorter T₁-relexation times [1] for ³¹P spectroscopy in general [2]. Employing RF surface coil arrays further increases the achievable SNR, enabling increase in temporal and/or spatial resolution. Here, a dedicated 3 channel ³¹P array combined with a 2 channel ¹H array conformed to the back of the head for ³¹P NMR studies in the human occipital lobe is presented together with preliminary results achieved with the proposed setup.

Methods: The coil was previously simulated and optimized by FDTD 3D electromagnetic simulation (XFdtd 7.4, Remcom, State College, PA, USA) together with a circuit co-simulation (ADS, Agilent, Santa Clara, USA), and an in-house developed post-processing software package (SimOpTx, RSA, MedUni Vienna, Austria) for SAR evaluation [3]. The resulting optimal coil size was used as a starting

¹H GRE of Papaya

31P GRE of Phantom

GRE image of a papaya is depicted, showing good coverage of the whole sample. **(b)** A transverse slice of the ³¹P 3D GRE image of the spherical ³¹P gel phantom.

point for the current work. Additionally it was modified to incorporate a circumferential copper shielding to reduce radiation losses and cable shield currents. Static B_1^+ shimming for the coil setup was determined in terms of a combination of transmit efficiency $(\overline{B_1^+}/\sqrt{SAR_{10g}})$ and relative inhomogeneity $(\overline{B_1^+}/std(B_1^+))$ by 3D EM simulation. Coil performance was evaluated with bench and MRI measurements. The coil setup seen in Fig. 1 consists of a three channel shared-capacitor decoupled, elliptical ³¹P array, with major/minor axis dimensions of 11 cm/9.9 cm. The ¹H array consists of 2 shared-capacitor decoupled channels for scout imaging and major/minor axis dimensions of 13 cm/11.7 cm. Both arrays were bent to conform to the shape of the human head yielding a coil height of 1.4 cm/1.9 cm for the ³¹P and ¹H array, respectively. The scattering parameters were measured on a network analyzer (E5061B, Agilent, Santa Clara, USA). MR measurements were performed on a 7 T MR scanner (Siemens Magnetom, Erlangen, Germany) using the proposed coil. The measurements were performed on a 20 cm spherical phantom filled with a phosphorous containing gel [4] and on a papaya fruit. Tuning, matching and decoupling capacitors were kept fixed for all experiments.

Images were acquired with a 3D gradient echo sequence for both nuclei. Parameters for ¹H and ³¹P scans were T_R/T_E=20/5 ms, FOV=160x160x128 mm³, matrix=128x128x30, and $T_R/T_F=80/6$ ms, FOV=281x281x281 mm³, matrix=32x32x32, 8 averages, respectively.

Results: Reflection and transmission and cross coupling coefficients for the ³¹P and ¹H arrays at both Larmor frequencies (120.3 MHz for ³¹P, and 297.2 MHz for ¹H) can be seen in Tab. 1. The Q ratio (Q_{unloaded}/Q_{loaded}) was 3.1 and 16.2 for the ³¹P and ¹H array, respectively, i.e. showing sample noise dominance in both arrays. The optimal phase shift for a high transmit efficiency and low relative inhomogeneity in the ROI (green ellipsoid in Fig.1a) was [0°/-70°/20°] for the ³¹P channels 1, 2, and 3, respectively. MR images of the papaya

and the spherical phantom are shown in Fig. 2.

Discussion: A ³¹P/¹H coil array was developed to improve ³¹P sensitivity in the visual cortex. Preliminary results show good performance of the setup. The feasibility of in vivo ³¹P measurements in the brain will have to be evaluated in future experiments.

References: [1] Bogner, MRM 62, 574-82, 2009. [2] Moser, World J Radiology 2, 2010. [3] Kuehne, ISMRM, 2013, 5119. [4] Goluch, MRM 2014, doi: 0.1002/mrm.25339.

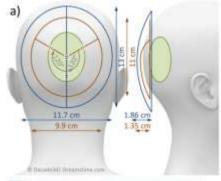


Fig. 1 (a) Frontal and lateral view of the proposed coil setup. The ³¹P array is depicted in red and the ¹H part in blue. The green ellipsoid is the region of interest located in the visual cortex. (b) A picture of the built coil setup with its housing.

	Reflection [dB]		Transmission [dB]	
	ω_{31P}	ω_{1H}	ω_{31P}	ω_{1H}
³¹ P	<-25.9 dB	>-11.6 dB	<-13.5 dB	<28.7 dB
¹H	>-9 dB	<-22.4 dB	-32.89 dB	-17.2 dB
	Cross-coupling [dB]			
³¹ P↔ ¹ H	ω_{31P} : <-31		ω_{1H} : <-19.5	

Tab. 1 Scattering parameter matrix measured at both Larmor frequencies while the coil was loaded with a spherical gel phantom.