

T_1 - and TR-Independent B_1^+ Mapping by Bloch-Siegert Shift for 7T Human Cardiac ^{31}P -MRS

William T Clarke¹, Matthew D Robson¹, and Christopher T Rodgers¹
¹OCMR, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom

PURPOSE: Accurate quantification of metabolite ratios in human *in vivo* cardiac ^{31}P -MRS relies on saturation correction, which requires accurate knowledge of excitation flip angles in the VOI. However, at ultra-high field (7T) peak B_1^+ and SAR limits currently make composite or adiabatic B_1^+ insensitive pulses infeasible in the human heart.¹ Thus B_1^+ must be estimated, or separately measured to find the flip angle (FA). Long T_1 s (typically 1s-6s) and 3D Chemical Shift Imaging (CSI) make magnitude B_1^+ -mapping methods, which require complete recovery of longitudinal magnetisation, infeasible for cardiac ^{31}P -MRS. Dual-TR methods have been proposed,² which require knowledge of precise metabolite T_1 s, but metabolites are under exchange with neighbours. A Bloch-Siegert (B.Siegert) phase based method is proposed for ^{31}P -MRS B_1^+ mapping, independent of metabolite T_1 s or sequence TR.³

METHODS: An off-resonance, variable-length Fermi Pulse³ (8ms $T_0 = 2.30\text{ms}$, $\alpha = 0.630\text{ms}$ or 4ms $T_0 = 1.15\text{ms}$, $\alpha = 0.315\text{ms}$) was placed between the excitation pulse and readout of a 3D UTE CSI sequence.⁴ B_1^+ can be related to the phase accumulated over the duration of the off-resonance Fermi pulse by the equation $\phi_{BS} = B_{1,\text{peak}}^2 \int_0^T \gamma^2 B_{1,\text{norm}}^2(t) / 2\omega(t) dt = B_{1,\text{peak}}^2 K_{BS}$. K_{BS} is constant for a specific offset and pulse envelope.³ A Siemens 7T system with a 10cm Tx/Rx surface coil was used throughout. Spectra were fitted using a Matlab implementation of the AMARES algorithm⁵, and voxels were treated as independent throughout the analysis. The B.Siegert effect was demonstrated in a $2\text{x}2\text{x}2\text{cm}^3$ single-peak phosphate phantom^{4(SI)}, using an unlocalised FID acquisition. (Fig.1) The 8ms Fermi pulse was swept over $\pm 10000\text{Hz}$. B_1^+ was computed using a full recovery “sin α ” method, and expected ϕ_{BS} compared with that measured.

B.Siegert mapping was validated in a uniform phantom (Fig. 2a), containing $0.04\text{M K}_2\text{HPO}_4\text{aq}$ with a separately measured $T_1 = 13.4\text{s}$, against a reference method that fit the partial saturation equation to the multiple flip angle experiment. Both methods used the same 2.4ms shaped excitation pulse and acquisition weighted CSI parameters: FOV=150x320x320mm³, resolution=16x8x8, averages at $k_0=5$. The B.Siegert B_1^+ was computed from the phase difference of the scans with the 8ms Fermi pulse placed at $\pm 2000\text{Hz}$. TR=1s, TA = 2x8min. The multiple FA method used 30V steps from 30V to 280V, a TR=10s, with a total scan time of 70min per 30V step (total ~11hrs).

B.Siegert mapping was compared with a previously published dual TR method in a healthy volunteer's quadriceps (Fig. 2b).² Both methods used the same excitation and acquisition weighted CSI parameters: FOV=200x200x200mm³, resolution = 8x8x8, averages at $k_0 = 14$, TA = 2x7min. In the B. Siegert *in vivo* scans the 8ms Fermi pulse was centred around the isolated and non-exchanging α -ATP peak, TR = 1s, and B_1^+ was computed from the phase difference with the pulse placed at $\pm 2000\text{Hz}$. The validation TRs used were 250, 600, 1000 and 1500ms; a literature value of $T_{1,\alpha-\text{ATP}} = 1.8\text{s}$ was used to calculate the B_1^+ .

Cardiac B.Siegert mapping was attempted in a single healthy volunteer. Two 15min acquisition weighted CSI scans were acquired: FOV = 240x240x200mm³, 16x8x8, averages at $k_0=13$, TR=1s, with the 4ms Fermi pulse at $\pm 2000\text{Hz}$. B_1^+ maps were computed from the phase difference of the α -ATP peak, and masked by the Cramér Rao Lower Bound of the calculated B_1^+ (CRLB $B_1^+ > 100\text{Hz}$ are excluded).

RESULTS: In the uniform phantom (Fig. 2a) there was excellent agreement between B.Siegert mapping and the long TR multi-FA magnitude validation method (Normalised Root Mean Square Deviation (NRMSD) = 0.11). A wider scatter was observed in quadriceps muscle (NRMSD= 0.23). In *in vivo*, a small (15%) improvement in accuracy is gained from fitting multiple off resonance points ($\pm 2000, \pm 3000, \pm 4000\text{Hz}$) but at the cost of a three-fold increase in scan time. α -ATP SNR = 9.3 is observed in the single cardiac experiment in the interventricular septum (IVS). The map is smoothly varying over the IVS and right ventricle, with a range of measured values between ~100 and 250Hz.

DISCUSSION: The accuracy of B.Siegert mapping compared to current gold-standards has been demonstrated in phantom and in skeletal muscle. The feasibility of this approach has been shown in cardiac scans, further work is required characterise the effects of B_0 inhomogeneity and the scan-scan reproducibility. The later could perhaps be addressed using a single acquisition and fitting B_1^+ from the phase difference of multiple peaks (e.g. PCr and α -ATP), however at γB_1^+ observed in the IVS (150Hz) and with the current experiment parameters, this difference is only ~ 3 degrees.

CONCLUSION: Accurate B_1^+ mapping by the B.Siegert shift has been shown to be viable for human cardiac ^{31}P -MRS. A T_1 - and TR-independent B_1^+ determination method opens up the route to fast cardiac T_1 and chemical exchange measurement protocols.

REFERENCES:

1. El-Sharkawy, A.-M. *et al.* (2009) Magn Reson Med, 61: 785–795.
2. Chmelfk, M. *et al.* (2014) J. Magn. Reson. Imaging, 40: 391–397.
3. Sacolick, L. I. *et al.* (2010) Magn Reson Med, 63: 1315–1322.
4. Rodgers, C. T. *et al.* (2014) Magn Reson Med, 72: 304–315.
5. Vanhamme, L. *et al.* (2002) JMR, 129: 35–43.
6. Bogner, W *et al.* (2009) Magn Reson Med, 62: 574–582.

ACKNOWLEDGMENTS: CTR and this work is funded by the Wellcome Trust and the Royal Society [098436/Z/12/Z]. WTC is funded by the MRC.

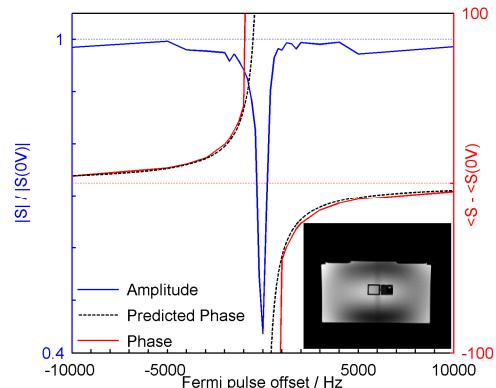


Fig. 1 Fitted phase and amplitude in $2\text{x}2\text{x}2\text{cm}^3$ K_2HPO_4 phantom as a 8ms Fermi pulse is swept from -10KHz to $+10\text{KHz}$. “Predicted phase” shows ϕ_{BS} ($B_{1,\text{peak}} = 266\text{Hz}$) separately determined via a fully relaxed $\sin \alpha$ approach.

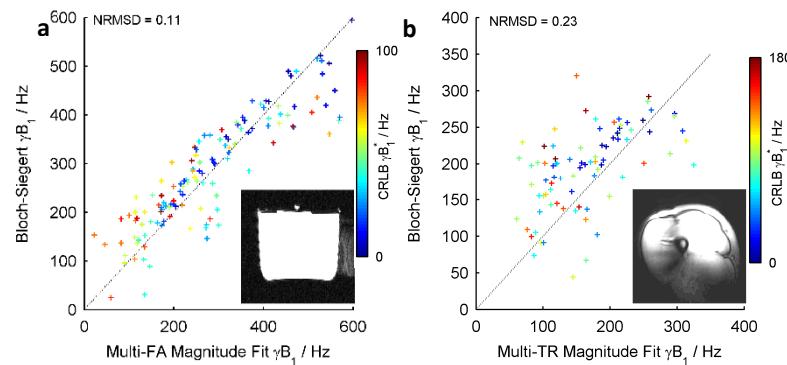


Fig. 2 a. Uniform K_2HPO_4 phantom, comparison of individual voxel B_1^+ s. Calculated from Multi-FA validation method vs. B.Siegert $\pm 2000\text{Hz}$ phase difference.
b. Quadriceps Multi-TR method ($T_{1,\alpha-\text{ATP}} = 1.8\text{s}$) vs. B.Siegert $\pm 2000\text{Hz}$ difference. Colours \propto CRLB $B_1^+ \propto$ SNR. CRLB above 100 & 180Hz respectively were masked.

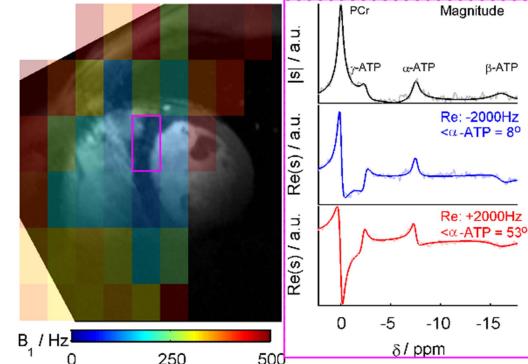


Fig. 3 $3\gamma B_1^+$ map (Hz) overlaid on a mid-ventricular SA localiser. The excerpt shows spectra from the highlighted voxel with the Fermi pulse at $\pm 2000\text{Hz}$, centred on α -ATP (7.7ppm). Spectra were acquired in 15mins per offset (2).