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Introduction: A 7 Tesla pTx system under construction at ELH Institute for Magnetic Resonance Imaging, Essen, Germany will employ 32 near-magnet power 
amplifiers (PA) of 1kW output power [1]. As magnetic circulators / isolators have to be avoided near the MR magnet, close “tuned” connection of PA output and coil 
causes mismatch of the PA due to load variation and coupling from neighbour channels; Fig.1 shows the principle configuration of the PAs feeding an array of coupled 
Tx coils. Variation of coil current due to load variation can be compensated by a Cartesian feedback loop implemented in the PA which senses the output voltage as 
explained also in [1]. However, variations of load impedance may also lead to instability of the feedback loop. In order to avoid instability in the pTx system, conditions 
and limits of stability have to be investigated for every possible mode of operation. In this contribution, we present the principle architecture of our PA with control loop 
and propose an efficient method of stability check which allows extension of stability investigations to the large pTx array. 

Concept of PA: The architecture of the Cartesian feedback power amplifier is sketched in Fig.2. The output voltage 
Vout of the final stage power amplifier is sampled by a voltage divider and is compared to the RF input signal Vin from the 
system RF exciter. The difference signal is I/Q down-converted to baseband and low-pass filtered to control a modulator 
(up-converter) of the same RF input signal. An extra DC offset voltage “1V” is applied to the modulator to set the 
amplifier chain gain and phase for the case that Vin and the sampled Vout are equal in phase and amplitude; this is the case 
for a matched termination while any mismatch or coupling from a neighbor coil will disturb the equilibrium and force the 
feedback loop to react. The RF signal resulting at the modulator output excites the PA final stage and closes the loop. 
Note that the concept of the conventional Cartesian feedback amplifier, e.g. [2], assumes constant local oscillator (LO) 
levels for both up- and down-conversion stages which guarantees a constant loop gain for varying RF input levels; on the 
contrary, in our concept the amplifier loop gain decreases with input power which improves stability at low RF input 
levels. Other than in conventional power amplifiers which employ a nonreciprocal circulator to separate and isolate the 
inner power transistor circuit from a mismatched load, in our case the amplifier transistor output voltage changes with 
load variations. In a first step, a Thevenin-type equivalent circuit for linear operation of the amplifier, Fig.3, was assumed 
in order to allow a network description of the load dependence of Vout ; the frequency dependence of the transfer function 
of the PA is represented by a band-pass filter (BPF). The behavior of our PA circuit model depends on the applied load 
impedance: For a matched termination of 50 Ω, no difference voltage is generated at the comparator and thus no feedback 
signal generated. With, e.g., a higher load impedance, the output voltage in the open loop case increases and a difference 
signal is obtained at the comparator; in closed-loop operation, the I- and Q- voltages from the down-converter control the 
up-converter in such a way that the change in output voltage is (partially) compensated, given that the phase conditions in 
the loop for negative feedback are satisfied. 
 Analysis method for stability: In RF feedback systems, often system stability margins are investigated using 
Bode plots, e.g. [3], of phase and gain of the open loop. However, a distinct decision can only be made by observing the 
closed-loop frequency response, i.e. the Nyquist plot. While both methods rely on representations of frequency 
dependence, a method more suitable for numerical evaluations is the analysis of the closed-loop transfer function of the 
feedback system by the root locus method. In order to decide that a system is stable or not, the root locus method 
develops the transfer function into a rational polynomial function of complex frequency s, with the zeros zi in the 
numerator and the poles pi in the denominator [3]. In a stable system all components of the response from a finite set of 
initial conditions decay to zero as time increases or yሺtሻ ൌ lim୲՜ஶ ∑ C୧୬୧ୀଵ e୮౟୲ = 0. If any pole has a positive real part 
there is a component in the output that increases without bound, causing the system to be unstable. Based on the system 
architecture shown in Fig.2, the transfer function for each block was derived assuming fixed impedance terminations for 
each block. The closed loop transfer function was written with the help of equ.1 in Fig.3, determining the load dependent 
transfer function of the PA. As a result, the simplified closed-loop transfer function [4] of our PA model is  

                                      
୚୭୳୲୚୧୬ ൌ ୣౠሺФౣషФౚሻ୔୅ሺୱሻൈ୏ൈ୐୔୊ሺୱሻଵାୣౠሺФౣషФౚశಐሻ୔୅ሺୱሻൈ୐୔୊ሺୱሻൈ୏ൈ୑ ൅ ୔୅ሺୱሻଵାୣౠሺФౣషФౚశಐሻ୔୅ሺୱሻൈ୐୔୊ሺୱሻൈ୏ൈ୑  (2), 

where Фm and Фd are vector modulator and vector demodulator phase shift, θ is phase shift of feedback pass and K is 
forward pass gain and H ൌ K ൈ M is open loop gain and LPF(s) is low pass filter that is used to define the bandwidth of 
the control loop. For illustration, Fig.4 shows the closed-loop frequency response of the PA model with a set of phase 
settings as indicated. The closed-loop transfer function in equ.2 was programmed in MATLAB and a routine was called 
up in MATLAB to calculate and plot the poles and zeros of the transfer function in the complex plane. 

Results and Discussions: Fig. 5a shows the poles and zeros of the closed-loop transfer function for 50 Ω load with 
the same phase shifts as in Fig. 4. Real parts of all poles are negative which predicts a stable system. Fig. 5b shows the 
corresponding time domain ADS simulation which exhibits a smooth exponential transition. Fig. 6 illustrates the poles 
and zeros of the same system terminated in 500 Ω. The positive real parts of the dominant poles predict an unstable 
system which is confirmed by an exponential increase seen in the time domain plot. A root locus plot can be generated by 
plotting the roots as a function of the PA load impedance. Observing the distance of roots to the right half-plane this 
allows a precise judgment of areas of stability. In a pTx array the coupled coils can generate wide variations of the load 
impedance seen by each PA of the array, with even negative real part, depending on the array excitation vector and the 
coil coupling matrix. The method allows to easily identify the stable array modes by scanning through the resulting load 
impedances at each PA in the pTx array. 
Reference: [1] Solbach, K et al. ISMRM 2014, abstract 1287. [2] Dawson, J.L et al. American Control Conference 
2004, Pages 361-366 vol.1. [3] Ogata, K, “Modern Control Engineering”. Prentice-Hall. [4] Gonzalez, M.A et al. EuRAD 
2006, Pages 327-330. 
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Fig.1: Array of feedback amplifier. 

Fig.2: Simplified block diagram of 
Cartesian feedback PA. 

 PAሺsሻ     ൌ G ൈ BPFሺSሻ ZloadZin ൅ Zload ሺ1ሻ 

Fig.3: Equivalent circuit for PA. 

Fig.4: Closed- loop frequency response. 
Фm=0°, Фd=-80°, θ=100°. 

 
Fig.5: (a) Pole-zero plot and (b) time 
domain response for stable system.           

 
Fig.6: (a) Pole-zero plot and (b) time 
domain response for instable system.         
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