MEASURING THE RATE OF PHOSPHOCREATINE RECOVERY IN HUMAN SKELETAL MUSCLE AFTER EXERCISE BY LOCALIZED 1H MRS WITHOUT WATER SUPPRESSION AT 7T

Jimin Ren^{1,2}, Baolian Yang³, A. Dean Sherry^{1,4}, and Craig R. Malloy^{1,5}

¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States, ²Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States, ³Philips Healthcare, Cleveland, Ohio, United States, ⁴Department of Chemistry, University of Texas at Dallas, Richardson, Texas, United States, 5VA North Texas Health Care System, Dallas, Texas, United States

INTRODUCTION: There has been great interest in measuring ATP synthesis in skeletal muscle using ³¹P MRS. ¹⁻⁷ This is typically done either by measuring the rate of chemical exchange between inorganic phosphate (Pi) and γ -ATP in resting muscle using ³¹P magnetization transfer techniques,^{2,3} or by measuring the rate of recovery of phosphocreatine (PCr) after exercise.¹ In muscle, ATP may be derived from substrate-level phosphorylation or oxidative phosphorylation and standard ³¹P NMR methods do not distinguish these sources. Furthermore, ³¹P NMR spectroscopy, although attractive in terms of spectral simplicity, is not widely available on most clinical scanners.3 This work explores the feasibility of an alternative approach for measuring the rate of PCr recovery in muscle after exercise using localized ¹H MRS, a technique not only widely available but also suitable for characterizing skeletal muscle of crosssectional heterogeneity during exercise. This approach is based on the early work by Kreis and colleagues, who assigned the H signal at 3.9 ppm to the methylene of PCr, supported by their observation of its proportional response in intensity to the co-registered ³¹P PCr level after exercise.4 However, due to residual dipolar coupling, the PCr methylene 1H signal is split into a doublet at low field 1.5 T while the upfield proton signal at 4.1 ppm falls coincidentally at the chemical shift of methine resonance of lactate, a metabolite abundant in muscle after fatiguing exercise.⁵ We illustrate here that the increased chemical shift dispersion at 7T allows a clear distinction between lactate and PCr signals in the ¹H NMR spectrum, and thus a more confident measurement of PCr recovery.

METHODS:

¹H and ³¹P MR spectra were acquired in an interleaved mode from forearm muscle using a 7T whole-body scanner, with the dominant forearm placed in the center of coil but tilted left-toright to minimize the effect of residual dipolar coupling. The coil was a partial volume double-tuned ¹H /³¹P T/R coil. ¹H NMR parameters: Single-voxel STEAM sequence with TR 2 s, TE 100 ms, NA 8. Non-localized ³¹P NMR parameters: TR 4 s, NA 1. Four subjects (3 females and 1 male, age 26 - 33 y), participated the study with written consent. Two minutes into data acquisition, the subjects were instructed to squeeze a rubber ball repeatedly every 4 sec at a high intensity level to fatigue the muscle in about 2 min. Data acquisition continued for 20 more minutes after cessation of exercise.

RESULTS and DISCUSSION:

A typical ¹H MR spectral series shown in Fig.1A clearly illustrates the appearance of the lactate CH signal (4.1 ppm, Lac) and disappearance of the PCr CH₂ signal (3.9 ppm, Cr2) immediately after an intense period of exercise. The time course of Cr2

31P MRS post (exercise)

Fig.1 (A) Single-voxel ¹H MR spectra and (B) Non-localized ³¹P MR spectra, acquired from forearm muscle (T2w image, inset) of a healthy female before, during and after fatiguing exercise. The voxel was placed in flexor digitorum profundus.

recovery follows a $t_{1/2}$ constant of 40 sec, which matches well to the recovery of the PCr 31 P signal ($t_{1/2}$ = 44 sec, Fig. 1B) in the same time period for this particular subject. The resultant rate constant of 0.027 \pm 0.05 s⁻¹ (1/ $t_{1/2}$, N =4) by ¹H MRS is comparable to the observation in tibia anterior muscle (~ 0.03 s⁻¹) by Kreis et al. also using ¹H MRS. ⁴ The high concentration of lactate implies that flux through glycolysis is inhibited in exercised muscle during after exercise. Presumably, the recovery of PCr exclusively reflects ATP synthesis during oxidative phosphorylation. In contrast to Cr2, the signal of Cr3 was only partially reduced immediately after exercise (~20%, Fig.1A), which is consistent with previous observation⁴ and can be explained by its relatively long T₂ and small residual dipolar coupling effect.4,8

CONCLUSIONS: We demonstrated that the rate of recovery of phosphocreatine after exercise can be measured without interference from residual dipolar coupling and lactate in human forearm muscle using localized ¹H MRS without water suppression at 7T.

REFERENCES: 1. Schmid Al, Schrauwen-Hinderling VB, et al, Magn Reson Med. 2012;67:898-905. 2. Peterson KF et al, Science, 2003;300:1140-1142. 3. Ren J, Yang B, Sherry AD, Craig MR, Magn Reson Med. 2014; DOI 10.1002/mrm.25256. 4. Kreis R, Jung B, Felblinger J, Boesch C, J Magn Reson 1999:137:350-357. 5. Ren J, Sherry AD, Craig MR, Magn Reson Med. 2013:70:610-619. 6. Kemp GJ, Brindle KM, Diabetes, 2012;61:1927-34. 7. From AH, Ugurbil K et al. Am J Phys Cell Physiol, 2011;301:C1-C11. 8. Ren J, Sherry AD, Craig MR, Magn Reson Med. 2010;64:662-671.