

³¹P MRSI of the brain at 3T with an improved 8-channel receive array and Whitened Singular Value Decomposition for optimal combination of ³¹P array signals

M.J. van Uden¹, A. Rijpma^{2,3}, C.T. Rodgers⁴, Bart Philips¹, T.W.J. Scheenen¹, and A. Heerschap¹

¹Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands, ²Department of Geriatric Medicine, Radboud University Medical Center, Gelderland, Netherlands, ³Radboud Alzheimer Center, Radboud University Medical Center, Gelderland, Netherlands, ⁴OCMR, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom

Target audience: RF-coil designers, researchers with interest in ³¹P MR spectroscopy

Purpose: Phosphorus MR Spectroscopy (³¹P MRS) provides valuable information about energy and phospholipid metabolism in neurological diseases like Alzheimer's disease¹ and brain tumors². The low intrinsic ³¹P sensitivity can be increased not only by the use of higher magnetic fields, but also by the use of an array of smaller coils to receive the MR signal. This approach is particularly attractive in combination with a volume transmit coil as conventional block pulses can be used for homogeneous excitation as has been reported for 4T and 7T MR-systems with arrays of smaller receive only coils to cover the full volume of the head^{3,4,5}. When signals in MRS have a low intensity, the accumulation, phasing, and weighting of the signals from an array becomes challenging⁶. Here we demonstrate an improved 8-channel ³¹P head array insert combined with a dual-tuned ¹H/³¹P birdcage transmit coil with homogenous transmit field, for ³¹P MRSI at 3T. It allows ¹H decoupling and NOE to further enhance sensitivity. We also compared the performance the methods Time-Domain⁷ and Whitened Singular Value Decomposition (WSVD)⁸ to combine ³¹P from our arrays.

Methods: A home built 8-channel ³¹P head array (diameter 24.5cm) was combined with a quadrature TxRx ³¹P/¹H birdcage coil (RAPID Biomedical GmbH.) detunable at the ³¹P frequency⁹. Improvements to the head array insert consisted of replacing all ¹H tank circuits by an improved trap circuit¹⁰ and removal of all fuses. Fuses were "replaced" by an electronic circuit that detects if a direct current is flowing through the PIN-diode, which prevents scanning whenever there is no direct current flowing. The probe was tested at 3T (TRIO Siemens, Erlangen) on 2 volunteers and a ³¹P phantom. For both frequencies γB_1 was calibrated. A 3D ³¹P MRSI dataset was acquired with a hard excitation pulse of 500 μ s (flip=40°, TR=2s, 10x10x10 (16x16x16 interpolated), voxel size after apodization 51.9 cc) and using WALTZ16 ¹H decoupling. Signal was received with the birdcage or with the ³¹P head array when present. The ³¹P MRSI data acquired with the receive array were combined using both Time-Domain and WSVD methods. The ³¹P SNR was calculated by dividing the total peak integral (HLSVDpro) by the standard deviation of the time domain noise of the same voxel.

Results: No loss in transmit efficiency for ¹H and a 20% loss for ³¹P was detected in the birdcage after introduction of the 8-channel array coil. The SNR of the ³¹P MR spectra varied across the brain when the array coil was used, with higher SNR closer to the individual receive elements (e.g. voxel 1, 2 and 5 in figure 1). Table 1 shows the SNR differences between the two RF-coil setups and coil combination methods for all volunteers.

Discussion: An improved 8-channel head array in combination with WSVD resulted in a 2 fold SNR increase with respect to earlier presented work⁹. Our alternatives for lossy circuits and components provide the gain in SNR. This gain is hard to quantify exactly because inter-element decoupling, tuning and matching all have an influence on the performance of the RF-coil and will confound such a comparison. The comparison of the WSVD and Time-Domain coil combination methods showed a substantial SNR increase (up to 56% in the frontal lobe where spectral SNR is low) for the WSVD method with the RF-coil insert configuration as detailed above.

Acknowledgement: CTR is funded by the Wellcome Trust and the Royal Society [098436/Z/12/Z]

References: [1]Mandal,P.K. Concepts in MR(2007); [2]Maints,D. ea. NMR Biomed(2002); [3]Avdievich,N.I. ea. J.Magn.Reson.(2007); [4]Zhang,X. ea. ISMRM(2005); [5]Avdievich,N.I. ea. ISMRM(2010); [6]Wright,S. ea. NMR Biomed(1997); [7] Brown,M.A. MRM(2004); [8]Rodgers,C.T. ea. MRM(2010); [9]van Uden,M.J. ea. ESMRMB(2013); [10]Meyerspeer,M. ea. MRM(2014)

Figure 1: a) a transversal slice with ³¹P MRSI grid voxel locations and true size; b) spectra shown from voxel 5;

Voxel	Vol 1		Vol 2	
	WSVD/ birdcage	WSVD/ Time- Domain	WSVD/ birdcage	WSVD/ Time- Domain
³¹ P 1	4.19	3.97	1.48	1.56
³¹ P 2	1.54	1.32	1.3	1.16
³¹ P 3	1.11	0.86	1.05	1
³¹ P 4	1.98	1.23	1.16	1.23
³¹ P 5	2.48	1.53	0.99	1.14

Table 1: ³¹P SNR increase by WSVD of the five voxels shown in figure 1