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Introduction: Matrix coils were originally developed for shimming to improve the magnetic homogeneity'. Recently, these coils were adapted for
encoding showing their potential to offer high flexibility in generating customized spatial encoding magnetic fields*®. In conventional approaches, each
coil element is driven by its own amplifier. Harris introduced a dynamically controlled adaptive shimming method and the current path could be altered to
control a high number of coil elements by a single amplifier®. Last year, a multi-channel switching system for matrix gradient coil was introduced to
reduce the total number of gradient amplifiers required to drive a matrix gradient coil”. This work presents an updated multi-channel switching circuit to
provide more flexibility to generate customized current patterns.

Methods: The switching circuit consists of a bridge switch array, an interconnection switch array and an amplifier selection switch array. Each coil
element is connected to its own bridge switch and can be configured such that current flows in either positive or negative direction or is bypassed. Fig.
1 shows a topology to connect in series and in parallel n*m coil elements, j gradient power amplifiers, n*m analog bridge switches, (n-1)*(m+1)
interconnection switches and 4*n*j amplifier selection switches. The bridge

s . SWitches and interconnection switches are used to dynamically configure
= o the current path of coil elements during the pulse sequence to generate the
(—== «x specific current pattern. The amplifier selection switches are used for
—= @ dynamically defining different channels of the current path during the

- experiment (the number of channels of current path is equal to the number
e ww.  Of gradient power amplifiers used). The bridge switches and
= o jnterconnection switches are placed in the immediate vicinity of the coil
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[ ams switches are placed in the immediate vicinity of gradient power amplifiers
e o thus also reducing the length of connecting wires. Fig. 2 presents the
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Fig.1 Block diagram of multi-channel switching circuit containing
arrays of bridge switches (red), interconnection switches (blue)
and amplifier selection switches (green)

Discussion: In this work, the dynamically adapted magnetic encoding field is implemented by the switching circuit to generate different combinations of
matrix gradient coil elements and available gradient power amplifiers during pulse sequences. Many coil elements are driven by a single gradient power
amplifier; therefore, the total number of gradient power amplifiers can be reduced. A gradient power amplifier with the function of an on-line tunable load

is required to drive different combinations of coil elements. Consequently, the |
amplifiers XPA-150-350 (IECO, Finland) will be used to drive the matrix == <_~ current
gradient coil. Each amplifier channel can support 15 different coil loads during ‘ Waveform
one experiment. The metal-oxide-semiconductor field-effect transistor 52 as <’*
(MOSFET) is used as the switch element. The number of coil elements driven |

by single gradient ampilifier is limited because of the on-state resistance of the
MOSFET. The on-state resistance of single switch is approximately 30 mQ,

generator

- SWs i &
iltlers 5
GPAs| Switch

i controller

PC

il
Ll

the resistance of single coil element is approximately 10 mQ, and the load
resistance range of the amplifier is 0 Q to 1 Q; therefore, the combinations of |
coil elements and switches is constrained by these parameters. RF shielding room

Fig.2 Gradient system including the multi-channel switching circuit
(B&l SWs=bridge and interconnection switches, AS SWs=amplifier selection switches)

]

To achieve high flexibility of the current pattern, a huge number of switches would be required. For example, for a 12x9 matrix gradient coil with 12
gradient power amplifiers, 108 bridge switches, 110 interconnection switches and 576 amplifier selection switches would be required. This degree of
complexity is probably not practical. Therefore an optimization method to find suitable combinations of coil elements and amplifiers is being developed to
reduce the number of switches required while maintain the flexibility of the matrix gradient coil. A prototype of switching system will be tested after the
construction of the matrix gradient coil.
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