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Target Audience: Clinicians and scientists interested in contrast-enhanced perfusion MRI, for applications in cancer therapy  

Purpose: Dynamic contrast-enhanced (DCE) MRI is a promising method for predicting therapy response in cancer patients.1 The 
predictive capability of DCE-MRI depends on the analysis technique, such as semi-quantitative or quantitative analysis.2,3 Here, we 
introduce a method that combines elements of quantitative analysis with shape analysis.4 We show that our method can predict therapy 
response in patients with breast cancer, and that it can outperform prediction based on quantitative analysis from a previous study.3  

Theory: Our proposed method identifies the presence of pre-defined classification 
shapes (here, signal-time curves) in measured data. We define classification shapes 
by using the Tofts model with parameter values from the literature and an arterial 
input function (AIF). Here, we chose parameters from Eliat et al.5 to define two 
concentration-time curves: low permeability (K୲୰ୟ୬ୱ ൌ 0.14,	vୣ ൌ 0.49), and high 
permeability (K୲୰ୟ୬ୱ ൌ 0.35,	vୣ ൌ 0.43). By taking the native tissue T1 and contrast 
agent relaxivity into account, the two concentration-time curves are converted to 
signal-time curves and then normalized to the maximum signal value in all curves 
(Fig 1). The classification assumes that curves in the acquired data are weighted 
mixtures of the low- and high-permeability shape. The weights are computed using 
non-negative least squares (NNLS).   

Methods: Our hypothesis was that the weights for patients showing pathologic 
complete response (pCR) would be different from those of non-pCR patients. To test 
this, we applied our method to the freely available "QIN Breast DCE-MRI" dataset 
from the Cancer Imaging Archive, originally acquired by Huang et al.3 from 10 breast-
cancer patients undergoing neoadjuvant chemotherapy. Among these patients, 3 
showed pCR. We used images from the pre-treatment exam (Visit 1) and after the first 
treatment cycle (Visit 2). NNLS analysis returned the weights (Fig. 2) and we 
evaluated whether the mean weight of non-zero voxels (MeanNZ) in the tumour ROI 
can predict therapy response. We also evaluated whether the predictive capability of 
this approach is sensitive to inaccuracies in T1 or the AIF. We initially used the T1 
values (ranging from 1600ms to 2500ms) and the AIF provided in the "QIN Breast 
DCE-MRI" dataset to define classification shapes (“Standard” in Fig. 3). We repeated 
the analysis using incorrect T1 values of 1000 ms and 100 ms, and after substituting 
the AIF by the population-based AIF model and parameters from Parker et al.6  

Results & Discussion: The MeanNZ for the low-permeability shape at visit 1 and for 
the high-permeability shape at visit 2 were both able to separate pCR from non-pCr 
patients (Fig. 3). The high-permeability shape at visit 1, and the low-permeability 
shape at visit 2, did not have predictive value. T1 
errors had little impact. However, the choice of AIF 
had a noticeable effect, as seen in the two right-most 
columns of Fig. 3a. The area under the receiver 
operating characteristic curve (AUROC) is 1 for 
most cases in Fig. 3a and all cases in Fig. 3b; 
however, the AUROC drops to 0.952 for the low 
permeability shape at visit 1 when Parker’s 
population-based AIF is used. This value is still 
larger than the highest pre-treatment AUROC using 
quantitative analysis on this same dataset (=0.857)3. 
These results show that shape analysis of perfusion 
MRI based on representative quantitative model curves could be a powerful analysis tool for prediction or early assessment of 
treatment response. 
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