

Dynamic Contrast-Enhanced MRI model parameters from different regions within the vascular wall of carotid plaques: comparison with histology

Raf H.M. van Hoof^{1,2}, Evelien Hermeling^{1,2}, Nicky J.A. Wijnen¹, Floris H.B.M. Schreuder^{1,3}, Martine T.B. Truijman^{1,3}, Stefan A. Voo^{2,4}, Jack P.M. Cleutjens^{2,5}, Judith C. Sluimer^{2,5}, Sylvia Heeneman^{2,5}, Robert J. van Oostenbrugge^{2,3}, Jan-Willem H. Daemen⁶, Mat J.A.P. Daemen⁷, Joachim E. Wildberger^{1,2}, and M. Eline Kooi^{1,2}

¹Radiology, Maastricht University Medical Center, Maastricht, Netherlands, ²Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands, ³Neurology, Maastricht University Medical Center, Maastricht, Netherlands, ⁴Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands, ⁵Pathology, Maastricht University Medical Center, Maastricht, Netherlands, ⁶Surgery, Maastricht University Medical Center, Maastricht, Netherlands, ⁷Pathology, Academic Medical Center, Amsterdam, Netherlands

Target Audience: Researchers interested in non-invasive measurement of microvasculature in carotid plaques

Introduction: Interest in atherosclerotic plaque microvasculature, a hallmark of plaque vulnerability, has greatly increased in recent years. Several studies have shown a correlation between quantitative perfusion parameters (e.g. K^{trans}) derived from pharmacokinetic modelling of Dynamic Contrast-Enhanced (DCE)-MRI with microvasculature as assessed by histology^{1, 2}, and other features of plaque vulnerability³⁻⁵. However, these studies focused on only a single region of the vascular wall (i.e. either the entire vessel wall or, adventitial region) using various descriptive statistics (mean, median, or 75th percentile), which makes direct comparison between studies and interpretation difficult. Therefore, we aim to systematically investigate the agreement between K^{trans} parameters from the various regions of the vascular wall (entire vessel wall, adventitia, or plaque) using different descriptive statistics and their correlation with the microvasculature on histology as gold standard.

Methods: MRI Acquisition. 45 symptomatic patients with 30-99% carotid stenosis underwent MRI⁶, including ECG-gated 3T DCE-MRI (T1w 3D FFE) on a 3T Achieva TX whole body MRI system (Philips, The Netherlands) using a dedicated 8-channel carotid RF coil. At the third time frame (≈ 60 s), 0.1 mmol/kg Gadobutrol (Bayer Healthcare, Germany) was injected at 0.5 ml/sec followed by a 20 ml saline chaser. MR Image Analysis. Luminal and outer vessel wall contours were drawn manually. Adventitial and plaque contours were determined automatically from the vessel wall contours³. Voxel-wise pharmacokinetic analysis was performed using the Patlak model⁷ in the entire wall, adventitia, or plaque region separately, and using various descriptive statistics. Histology. Carotid endarterectomy was performed in 12 patients and specimens were collected. Specimens were fixed and further processed into 4- μ m-thick slices. Plaque microvasculature was detected with CD31 immunohistochemistry and assessed using morphometric analysis software (Leica, England). Endothelial microvessel perimeter was determined and correlated to K^{trans} parameters using Pearson's correlation coefficient. Two patients were excluded for analysis with histology because of poor MRI ($n=1$) or histology ($n=1$) quality.

Results: MR Parameter Agreement. A strong correlation was found between K^{trans} determined as mean, median, or 75th percentile from one vascular region (Table), although absolute values differed. Adventitial K^{trans} showed a weak correlation with plaque K^{trans} ($r=0.54$, $p=0.05$), but stronger with entire wall K^{trans} ($r=0.78$, $p=0.007$, Table). Adventitial K^{trans} was substantial higher compared to that of the plaque (17.3%, $p<0.001$) and the entire wall region (13.9%, $p<0.001$). The uncertainty in K^{trans} model parameter estimation was significantly higher for plaque and entire wall compared to adventitia ($p=0.015$ and $p=0.018$ respectively). Correlation of MRI with Histology. A significant positive correlation was found between K^{trans} determined from either the entire wall ($r=0.65$, $p=0.045$) and the adventitial region ($r=0.85$, $p=0.002$), but not for the plaque region ($r=0.44$, $p=0.2$).

Discussion and Conclusion: K^{trans} determined as mean, median or 75th percentile from one vascular region have a strong mutual correlation. Although K^{trans} values assessed over various regions within the vascular wall are correlated, the absolute values are different. More importantly, adventitial K^{trans} seems to be a better measure for plaque microvasculature compared to other regions of the vascular wall, coinciding with a lower uncertainty in the parameter estimation. Comparison with histology in a larger number of patients is recommended for definitive recommendations for standardization.

	K^{trans} , adventitia	Group average		Pearson's correlation coefficient		
		mean \pm SD [min^{-1}]	median [§]	mean [§]	75 th percentile [§]	histology [#]
A	median	0.062 \pm 0.018	-	0.93***	0.91***	0.85**
	mean	0.088 \pm 0.028	0.93***	-	0.98***	0.72*
	75 th percentile	0.110 \pm 0.036	0.91***	0.98***	-	0.73*
B	K^{trans} , median	mean \pm SD [min^{-1}]	entire wall [§]	adventitia [§]	plaque [§]	histology [#]
	entire wall	0.055 \pm 0.014	-	0.76***	0.97***	0.65*
	adventitia	0.062 \pm 0.018	0.76***	-	0.63***	0.85**
	plaque	0.053 \pm 0.014	0.97***	0.63***	-	0.44

Table: Correlation of A) adventitial K^{trans} parameter mutually using different statistical descriptives and with endothelial microvessel perimeter determined with histology and B) median K^{trans} values from the three vascular regions mutually and with histology. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, [§] $n=45$, [#] $n=10$.

References: ¹Kerwin et al., Circulation 2003;107:851-6, ²Gaens et al., Radiology 2013;266:271-9, ³Sun et al., Stroke 2013;44:1031-6, ⁴Truijman et al., Stroke 2013;44:3568-70, ⁵Calcagno et al., EJNMMI 2013;40:1884-93, ⁶Truijman et al., Int J Stroke 2013;10:1111, ⁷Patlak et al., JCBFM 1983;3:1-7. **Acknowledgements:** This research was performed within the framework of CTMM, project PARISK (grant 01C-202), and supported by the Netherlands Heart Foundation.