

Diffusion tensor imaging of forearm nerves for early diagnosis of multifocal motor neuropathy


Wieke Haakma^{1,2}, Bas Jongbloed³, Martijn Froeling¹, Clemens Bos¹, Stephan H. Goedee³, Michael Pedersen⁴, Ludo van der Pol³, Alexander Leemans⁵, and Jeroen Hendrikse¹

¹Department of Radiology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands, ²Department of Forensic Medicine & Comparative Medicine Lab, Aarhus University, Aarhus, Central Denmark, Denmark, ³Department of Neurology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands, ⁴Department of Clinical Medicine - Comparative Medicine Lab, Aarhus University, Aarhus, Central Denmark, Denmark, ⁵Image Sciences Institute, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands

Audience: Clinicians and researchers interested in imaging nerves in peripheral nerve disorders

Background and purpose: Multifocal motor neuropathy (MMN), a peripheral neuropathy, is a rare immune-mediated disorder that affects 1-2 person per 100.000.¹ The disease is characterized by its progressive, multifocal, asymmetric distal limb weakness without any sensory involvement. Motor deficit usually starts in the hands and can spread to arms and feet.² Due to the progressive pure motor weakness, MMN is often confused with amyotrophic lateral sclerosis (ALS). However, unlike MMN, the symptoms of ALS are rapidly progressive and often affect the lower and upper motor neuron, whereas MMN only affects the lower motor neurons.¹ ALS is a fatal condition, the mean survival is three to five years after diagnosis³, whereas MMN patients have a normal life expectancy. Nevertheless, due to progressive axonal loss in the demyelinated nerves, MMN patients can be long-term disabled.¹ Early detection of MMN and discriminating this disease from ALS is highly important as the start of immunoglobulin therapy prevents rapid degeneration of myelin in MMN. Current diagnosis in MMN include electromyogram (EMG) to indicate potential conduction blocks in MMN, discriminating it from ALS. However, in some cases conduction blocks cannot be identified although MMN is the underlying etiology.² Here, we test the feasibility of magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and fiber tractography (FT) to explore potential changes of diffusion values in the peripheral nerves in the forearm to distinguish MMN patients from ALS patients.

Methods: Local institutional review board approval was obtained for this study and written informed consent was given prior to the MRI examination. As part of an ongoing study, 8 MMN patients, 3 ALS patients, and 5 healthy controls underwent MRI for both forearms on a 3 Tesla MR system (Achieva; Philips Healthcare, Best, The Netherlands) using a 32-channel phased-array surface coil. DTI was performed based on diffusion-weighted spin echo single-shot echo planar imaging (EPI) in the axial plane with the following parameters: TE = 66 ms, TR = 6340 ms, SENSE factor 2, FOV 240 × 120 mm², matrix size 160 × 80, 60 slices with thickness = 4.0 mm, resulting in a voxel size of 1.5 × 1.5 × 4.0 mm³, half scan 0.69, SPIR fat suppression, b-values 0, 400 and 800 s/mm², and 15 gradient directions for each b-value. The total acquisition time was 9:32 minutes. As an anatomical reference, an axial T2 SPAIR, T1 TSE, and T2 TSE images were obtained. An EMG was obtained to identify conduction blocks. Scans with low SNR or high motion distortion were excluded, leaving 10 arms in MMN patients, 4 arms in ALS patients and 9 arms in healthy controls. DTI scans were corrected for motion distortion with the diffusion MRI-toolbox *ExploreDTI* and tensors were fitted using the REKINDLE procedure.⁴ Whole volume tractography was used with a threshold of 0.30 on the FA index. SEED ROIs were placed at different levels of the nerves. The images with b-value 800 were used to calculate the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). A linear mixed model was used to compare nerves in the three groups. Correction for clustering was integrated in this model.

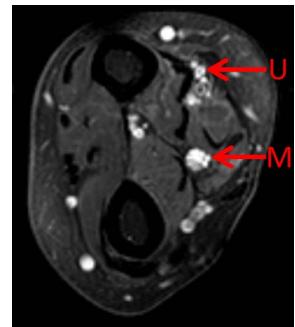


Figure 2: Axial diffusivity color map of the median and ulnar nerve in A) MMN patient, B) ALS patient, and C) healthy control. In some MMN patients it was not possible to track the entire nerve (see ulnar nerve in A).

Conclusion: This 3T MRI study shows the feasibility of DTI and FT to visualize the ulnar and median nerves in MMN, ALS and healthy controls and to identify diffusion values. Although the results are preliminary, and sample size is small, these results already show the differences in FA and AD values between MMN and healthy controls. A possible explanation is the immune myelin degeneration of the peripheral nerves in MMN patients which is not present in healthy controls. Although we did not find any differences between ALS and MMN and ALS and healthy controls, it could be that differences will become visible when more subjects are included. A larger sample size should indicate these potential differences with more statistical power. This study shows that combining anatomical MRI images with DTI and diffusion may provide a diagnostic technique to identify MMN patients and to potentially distinguish MMN from ALS patients. Especially for MMN patients in which no conduction blocks can be identified with EMG, this technique can be of great value. Future results should indicate whether this technique can be used to classify patients on an individual level. In MMN patients this is highly important as it allows to start treatment in an earlier stage and minimize nerve damage.

References:

[1] Jinka et al. Curr Treat Options Neur. 2014;16(2):1-15; [2] Katz et al. Neurology. 2002;58(4):615-20; [3] Rowland et al. New Engl Journ of Med. 2001;344(22):1688-700; [4] Tax et al. Magn Reson Med. 2014.

Figure 1: T2 SPAIR showing the median nerve (M) and the ulnar nerve (U)

Table 1 Diffusion parameters of MMN, ALS, and healthy controls (HC)

	Diffusivity (mm ² /s) × 10 ⁻³			
	FA	MD	AD	RD
MMN	0.44±0.02**	2.75±0.09	4.19±0.11**	2.03±0.10
ALS	0.46±0.03	2.74±0.07	4.30±0.18	1.93±0.14
HC	0.46±0.02**	2.82±0.09	4.42±0.12**	2.03±0.09

**MMN vs HC for FA and AD: p<0.05