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Target audience: Scientists interested in computational methods for white matter microstructure mapping from diffusion MRI. 
Purpose:  Biophysical models of brain tissues are becoming increasingly important to extract quantities directly related to axonal architecture (e.g. diameter, density) 
[1].  Here, we introduce an improved computational procedure for tissue microstructure models to extract such quantities from diffusion MRI data.  The parameters of 
multi-compartment models, which describe the underlining structure of the brain white matter, do not relate linearly to MRI measurements. Moreover, these functions 
are not simple enough to constitute well-posed optimization problems for parameter estimation.  Consequently, any fitting procedure using gradient-based methods 
depends largely on a very good initial guess, as for instance in CAMINO [2].  Currently, simpler models (such as the diffusion tensor) are being used to find this initial 
guess. Therefore, before estimating a three-compartment tissue model parameters (as given below), one ends up estimating five to six simpler models parameters. 
Markov chain Monte Carlo (as used in CAMINO [2] and in [3]) substantially increases the probability of finding global minimum but adds to the overall estimation 
time. Our Non-linear Least Squares (NLLS) optimization problem is of the following form:  ݉݅݊ோ,ఏ,థ,௙ଵ,௙ଶ,௙ଷ 						 ฮݕ െ	ሺ ଵ݂݁ି஺೎೤೗೔೙೏೐ೝሺೃ,ഇ,∅ሻ ൅ ଶ݂݁ି஺ೋ೐೛೛೗೔೙ሺഇ,∅ሻ ൅ ଷ݂݁ି஺ವ೚೟ሻฮଶଶ 
	ݐ݄ܽݐ	݄ܿݑݏ  ଵ݂ ൅ ଶ݂ ൅ ଷ݂ ൌ 1 ,			 ଵ݂ ൒ 0 , ଶ݂ ൒ 0 , ଷ݂ ൒ 0,			0 ൑ ܴ ൑ 20,			0 ൑ ߠ ൑ 0		and	 ߨ2 ൑ ߶ ൑  ߨ
 
Where vector ‘y’ has normalized MRI measurements, R is axon radius (μ-meters) θ and ϕ represent fiber orientation (radians), while f1, f2 and f3 are intra-axonal, extra-
axonal and isotropic volume fractions respectively. Only unknown parameters have been described here. 
Methods: Our suggested algorithm is based on exploiting the separable structure of the problem as described above, through the Variable Projection Method [4]. The 
variable projection guarantees that the global minimum of a variable projection functional remains unchanged. Moreover, variables entering nonlinearly into the 
objective function are estimated separately and the problem reduces to a conditional linear least squares (CLLS) estimation. The algorithm can be summarized in the 
following four steps: 

Variable Projection Genetic Algorithm (GA) based method  
Step 1.  Write NLLS objective function in terms of parameters entering nonlinearly only (R, θ and ߶), by variable projection. 
Step 2.  Use Genetic Algorithm based NLLS [5] to estimate the parameters of objective function obtained in step 1. 
Step 3.  Using values of estimated parameters in step 2, estimate conditionally linear parameters (f1, f2 and f3) with linear least squares. 
Step 4.  Perform constrained NLLS estimation using initial guess from step 3 to get values of conditionally linear parameters.    

Results and discussion:  
Evaluation on synthetic data 
The suggested algorithm was tested using synthetic data generated by own model routines written in MATLAB and also with data generated by CAMINO. Data was 
generated with different values of SNR using a Rician noise model with different tissue models (like ZepplinCylinderDot’). Parameters were estimated using both 
CAMINO (‘modelfit’ function) and the suggested algorithm. Table 1 shows a comparison of estimated parameters from synthetic data generated by CAMINO using the 
‘ZepplinCylinderDot’ tissue model. It can be 
seen that the parameters were estimated with 
better accuracy even at low SNR using the 
suggested method.  In particular radius was 
consistently better estimated by our proposed 
method. 
Evaluation on brain data 
 Diffusion MRI data was acquired on a healthy 
volunteer using a Siemens 3T Skyra system with 
voxel size 2mm3, and four b-values, each with 
119 directions and 18 additional b=0 volumes.  
b-values and corresponding parameters were chosen as follows [2]: b1=820 s.mm-2 
(Δ/δ/|G|max=17.6/9ms/98.5mT.m-1); b2=980 s.mm-2 (Δ/δ/|G|max=55.5/5.2ms/97.1mT.m-1); b3=3010 s.mm-

2 (Δ/δ/|G|max=38.5/22.2ms/52.4mT.m-1); and b4=7600 s.mm-2 (Δ/δ/|G|max=37.8/29.3ms/66.6mT.m-1). This 
dataset was used for further evaluation and comparison of the suggested algorithm. The data was fitted 
to ‘ZepplinCylinderDot’ model to estimate axonal radius in corpus callosum.  Results were consistent 
with CAMINO (Fig. 1) although the fitting procedure took about half the time required by CAMINO.  
It can be noticed on Fig. 1 that results obtained with our suggested method are more spatially coherent 
with a gradual increase in radius around the genu and splenium area. Recovered radii were also larger 
in the body [2].  An axial slice through the corpus callosum is presented in Fig 1 (C-D) where axonal 
radius and density estimates are shown.  
Conclusion: We suggest an iterative algorithm, based on separating the Non-linear Least Squares 
(NLLS) fitting problem into (i) finding non-linearly entering parameters separately using genetic 
algorithm and (ii) reducing the problem to CLLS for linear parameters. Convergence of this process to 
global minimum is absolutely independent of the starting point and requires no information of function 
derivatives, which leads to more robust parameters estimates.  
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 SNR f1=0.5 f1=0.3 f1=0.2 θ = 1.54 rad φ = 1.8 rad R = 5 μm 
CAMINO  12 0.662 0.083 0.255 1.58 -1.31 7.84 
Suggested Algorithm  12 0.4906 0.2826 0.2172 1.5527 1.8379 5.1005 
CAMINO  100 0.765 0.0195 0.215 1.6 -1.31 6.29 
Suggested Algorithm  100 0.5017 0.2974 0.199 -1.5404 -1.3087 5.0132 
CAMINO  200 0.59 0.367 0.0433 1.6 -1.31 3.49 
Suggested Algorithm 200 0.501 0.2986 0.1999 1.5401 1.8316 5.007 
Table 1. Comparison of parameters estimated by CAMINO and suggested algorithm with different SNR values (Top row 
shows values chosen for the model parameters). 

 

   

 
Figure 1.  (A) Axonal radius estimate by CAMINO, (B) 
Axonal Radius estimate by suggested algorithm, (C) Axonal 
diameter (0-20 �m ) and (D) intra-axonal volume fraction 
(f1) estimated by proposed algorithm (0 – 0.8). 
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