GPU imaging analysis for ultra-fast non-Gaussian diffusion mapping
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PURPOSE. In this contribution we focused on the application of graphics processing units (GPUs)accelerated computing in reconstruction of diffusion weighted
nuclear magnetic resonance (DW-NMR) images by using non-Gaussian diffusion models, such as the diffusional kurtosis imaging (DKI)'and the stretched exponential
model imaging (STREMI)?, which allow to increase the sensitivity and specificity of the DW-NMR mapsin detecting several pathological conditions®*. However, the
post-processing of DW-NMR images based on these models currently requires too long times for any application in real-time diagnostics. Typically, for the elaboration
of these images, 10°-10"voxels have to be managed. For each voxel the algorithm calculates at least 3 parameters by non-linear functions optimization. This is
computational demanding and takes some hours on recent multi-core processors(i.e. CPU Intel Xeon ES and E7) to obtain a brain map. The aim of this work is to
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implement non-Gaussian diffusion imaging processing on the massively parallel
architecture of GPUs and optimize different aspects to enable online imaging.
METHODS. Code implementation: a modern GPU device can have a number of
"multiprocessors" (MP), each of which executes in parallel with the others. Using the
Nvidia compute unified device architecture (CUDA), multiple thread blocks (and thus
multiple fittings) can execute concurrently with many parallel threads on one multi-
processor. Here we implemented an efficient and robust fitting algorithm, based on a
highly parallelized Levenberg-Marquardt (LM) method on GPU. The LM algorithm is
based on an iterative numerical optimization procedure that minimizes the sum of squared
model residuals. The function we used to perform LM fittings on GPU device is the GPU-
LMFit function’. GPU-LMFit uses a scalable parallel LM algorithm optimized for using
the Nvidia CUDA platform. Here we used two versions of the GPU-LMFit function: a
single-precision (S) and a double-precision (D) version. The code kernel calls GPU-LMFit
to perform the LM algorithm on each CUDA block, which is mapped to a single voxel.
Because the processing of different voxels is totally independent, the CUDA blocks do not
need to synchronize, and the kernel launches as many blocks as voxels contained in a
particular slice to speed up performance. The code was optimized to be fully integrated
within Matlab (The Mathworks, Natick, MA, USA) scripts. Two different multi-core
central processing unit (CPU) configurations and three different Nvidia GPUs were used
for the analysis and the cross-comparison of CPU and GPU performance (see Tablel). In
particular, Isgcurvefit function with Parallel Computing Toolbox was used to test multi-
core CPU performance. DW-NMR data _acquisition: an in vivo and an ex vivo healthy
mouse brain, fixed in paraformaldehyde and stored in PBS, was scanned at 7.0 T
(BRUKER Biospec). An imaging version of PGSTE sequence was performed with TE/TR
=25.77/4000 ms, A/d6=40/2 ms, NA = 14; 16 axial slices with STH= 0.75mm, FOV=6¢cm,
matrix 128x128 with in plane resolution of 470pm’were acquired with10 b-values ranging
from 100 to 8000s/mm? along 30 no-coplanar directions plus 5 b=0s/mm?*. DW-NMR data
analysis: parametric maps of kurtosis metrics, i.e. Kqpp-maps, were obtained by fitting on a
voxel-by-voxel basis the following relationto the DW image signal intensities (for
b<3000s/mm’):  S(b)/S(0)=exp(-bDupy+1/6b"Dypp Kupp), Where Dy, and Ky are the
apparent diffusion coefficient and kurtosis, estimated in the direction parallel to the
orientation of diffusion sensitizing gradients, respectively. STREMI parametric maps, i.e.
y-maps, were obtained by similar procedure, using the following relation: S(b)/S(0)=exp[-
(Dappb)'], where y is the stretching parameter, being between O and 1.Finally, the non-
Gaussian diffusion parametric maps My and MK were computed by averaging across the
30 directions in the corresponding y and K,y,-maps, respectively. The analyzed set of DW-
NMR images was of ~ 100-200 Mb. The total number of fittings to be performed was in
the range of(0.5-5)x10°.

RESULTS & DISCUSSION. Non-Gaussian diffusion parametric maps My and MK,
obtained by using Isqcurvefit on multiple CPU threads and GPU-LMFit on GPU, are
displayed in Figurel. The specific performances of each CPU configuration and GPU
employed are reported in Tablel, and the cross-comparison between Isqcurvefit and GPU-
LMFit results is reported in Figure2. From Figures 1 and 2 it is evident that the GPU
approach for STREMI is in perfect agreement with conventional CPU one. On the
contrary, for DKI, GPU-LMFit slightly overestimates MK values with respect to
Isqcurvefit. However,it is important to note that MK-maps obtained with GPU-LMFit
show a better contrast-to-noise ratio than the Isqcurvefit ones. Finally, from Tablel it is
possible to appreciate the relative speed-up obtainable using GPU-LMFit, which for
medium level GPUs is ~100x but for high level ones can reach a factor ~1000x. This
means that the GPU implementation reported here allowsto reduce the time for massive
image processing from some hours to some seconds (see Tablel).

CONCLUSION. The proposed implementation of LM algorithm on GPU makes it
excellent for extensive GPU-based applications such as massive MRI processing. Our
results show that the GPU application proposed here can further improve the efficiency of
the conventional LM model fittings, finally enabling automated parametric non-Gaussian
DW-NMR analysesin real-time.
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Figure 1 Comparison between CPU and GPU non-Gaussian
diffusion maps reconstruction. Reported maps were obtained by
using the Isgcurvefit on Intel Xeon E5-2620 CPUs and GPU-LMFiton
NvidiaQuadro K2000 GPU (see Tablel for details).

#1 Intel Xeon #2 Intel Xeon

E5-2609 E5-2620 GPUNvidia oy nyidia  GPU Nvidia
@2.4GHz @2.1GHz msamﬁ Srons Quadro K2000 Titan
(8 threads) (24 threads)
Average Speed 4x10% 12x10° 80X10%
(itfec) 0o 200m) 210° ¢ 8X10° ) 50x10 5
i 90 30 4
7.2x10% 1.8x10° ) 5 5
Time (sec.) () (0 180 © 45 70
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Foctor 1 4p) 40 p) 160 () 1000 (g

Table 1 Comparison of CPU and GPU performance in non-
Gaussian diffusion maps reconstruction.Different kind of hardware
configurations were investigated and specified in the second row.

Subscripts (S) and (D) indicate single- and double-precision,
respectively.
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Figure 2 Cross-comparison between Isqcurvefit and GPU-LMFit
results. GPU-LMFit(D) derived My (left) and MK (right) values as a
function of Isqcurvefit (D) derived ones, for the voxels of parametric
maps within mouse brain (for both in vivo and ex vivo). The straight
line represents perfect correspondence.
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