
Figure 3b. Gradients optimized with ߟ ൌ 0.88. 
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TARGET AUDIENCE MR physicists, computer scientists, or related, interested in advanced diffusion MRI or 
numerical optimization of gradient waveforms. 
 
INTRODUCTION Diffusion tensor imaging1 (DTI) summarizes the diffusion in each voxel as a tensor with six 
degrees of freedom. Consequently, it requires the acquisition of at least six diffusion-weighted images. The trace of 
the diffusion tensor, which relates to the mean diffusivity (MD), is a useful biomarker e.g. when studying tumor 
cellularity2 or diagnosing stroke3. It can be determined by single-shot isotropic diffusion weighting4, i.e. without 
doing full DTI. Although a good idea, it has – until recently – rarely been used in practice because the limited gradient 
amplitudes achievable in clinical scanners have made it challenging to obtain sufficient diffusion weighting when 
using isotropic encoding. The recent revival stems in part from an interest in using isotropic diffusion weighting for 
studying microscopic diffusion anisotropy5 and in part from developments in the numerical optimization of the gradient 
waveforms6, 7. In this work, we propose a new optimization framework for these gradient waveforms that makes far less 
modeling assumptions than previous work while it is at the same time easily adaptable to hardware constraint on 
maximum gradient amplitude, slew rate, heating and positioning of RF pulses.  

METHODS Instead of working directly with the gradient waveforms ݃௜ሺݐሻ (݅ ൌ ,ݔ ,ݕ  we formulate the optimization ,(ݖ

problem using ݍ௜ሺݐሻ ൌ ߛ ׬ ݃௜ሺݐᇱሻ݀ݐԢ௧଴ . The reason is that an isotropic diffusion encoding is achieved if the pulse 

sequence encoding q(t) = (ݍ௫(t), ݍ௬(t), ݍ௭(t))்satisfies6 ׬ ݐሻ்݀ݐሺࢗሻݐሺࢗ ൌ ௕ଷ ଴்ܫ , where ܶ is the echo time and ܾ is a 

scalar reflecting the strength of the diffusion encoding. Since the echo signal is given by ܧሺࢗሻ ൌ ݁ି௕ሺࢗሻ஽, where ܦ is 
the mean diffusivity, it is natural to attempt to find a pulse sequence ࢗሺݐሻ that maximizes ܾሺݍሻ for a given echo time. 
The optimization is complicated by a number of pulse sequence- and hardware-dependent constraints. The pulse 
sequence-dependent constraints are first the abovementioned isotropic diffusion encoding and second the echo 
requirement ࢗሺ0ሻ ൌ ሺܶሻࢗ ൌ 0. The hardware constraints on the maximum gradient amplitude, ܩ௠௔௫, and slew rate, ܴ௠௔௫, translate into componentwise constraints on the first and second derivatives of ࢗሺݐሻ. Another, possibly 
significant, hardware issue is heat dissipation in the gradient coils which (assuming resistive heating) is proportional 

to the time integral of ݃௜ሺݐሻଶ. This can be captured by the constraint ׬ ݃௜ሺݐሻଶ݀ݐ଴் ൑ ௠௔௫ଶܩߟ ܶ, where ߟ א  ሾ0,1ሿ is a 

dimensionless scalar. Varying the parameter ߟ allows us to balance heat dissipation against diffusion encoding. Taken 
together, we arrive at the optimization problem: 

Maximize ܾ  

Subject to  ׬ ݐሻ்݀ݐሺࢗሻݐሺࢗ ൌ ௕ଷ ଴்ܫ  

ሺ0ሻࢗ  ൌ ሺܶሻࢗ ൌ 0 

 
ௗ௤೔ௗ௧ ൑ ݅           ,௠௔௫ܩ  ൌ ,ݔ ,ݕ  ݖ

 
ௗమ௤೔ௗ௧మ ൑  ܴ௠௔௫,           ݅ ൌ ,ݔ ,ݕ  ݖ

׬  ݃௜ሺݐሻଶ݀ݐ଴் ൑ ௠௔௫ଶܩߟ ܶ,   ݅ ൌ ,ݔ ,ݕ  ݖ

To solve this problem we discretized ࢗሺݐሻ and replaced the derivatives and integrals with finite difference 
approximations. To achieve better convergence, we also relaxed the equality in the isotropy constraint, allowing a 
small violation ε in Frobenius norm. These steps turn the problem into a form in which it can be efficiently solved 
using sequential quadratic programming. One straightforward generalization captured by this framework is to use a 
measurement tensor8 other than the identity. Another generalization is to impose that the gradients must be zero 
during a time-interval (during which an RF-pulse is applied), which, when discretized, translates into a set of linear 
equality constraints.  

RESULTS The performance of the different gradient waveforms can be compared with respect to their diffusion weighting and the amount of dissipated heat. In 
general, the b-value of any gradient waveform can be expressed as ܾ ൌ ௠௔௫ଶܩଶߛܥ ܶଷ, where ܥ is an efficiency factor that depends on the gradient waveform. We ran 
optimizations using ܩ௠௔௫ ൌ 80 mT/m, ܴ௠௔௫ ൌ 100 mT/m, ܶ ൌ 60 ms and ߳ ൌ 10ିସ. Figure 1 shows the efficiency ܥ of our optimized waveforms as a function of 
the heat dissipation ߟ and compares it with previous work. Figure 2a and 2b shows the optimized waveforms for the choices of ߟ corresponding to the filled circles in 
figure 1.  

DISCUSSION AND CONCLUSION We have proposed a new framework for optimization of gradient waveforms corresponding to a desired measurement tensor. 
The formulation as a constrained optimization problem allows explicit control of hardware requirements, including maximum gradient amplitude, slew rate, heating and 
positioning of RF pulses. The power of this approach is demonstrated by a comparison with previous work on optimization of isotropic diffusion sequences, showing 
possible gains in diffusion weighting or in heat dissipation, which in turn means increased signal or reduced scan-times.  
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Figure 1. Sequence efficiency factor ܥ and 
relative heat dissipation ߟ for sequences 
optimized in this work and in previous 
work. The larger ߟ is the more heat is 
generated by the sequence. 

Figure 2a. Gradients optimized with ߟ ൌ 0.42. 
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