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Target Audience Those interested in the characterization of neural tissue microstructure using 
new models for the non-Gaussian diffusion signal. 
Purpose Excess kurtosis, K, is defined as the normalized fourth moment of a probability 
distribution function (pdf) with respect to the Gaussian pdf (i.e., K=3), as shown in Eq. (1). The 
first approach to estimate the apparent excess kurtosis, Kapp, in non-Gaussian diffusion MRI used 
a Taylor series expansion approach to measure the deviation against the Gaussian case of a 
monoexponential decay, as shown in Eq. (2)1. Due to the parabolic form of the argument in Eq. 
(2), a limit must be placed on the maximum b-value sampled for the fitting function to 
monotonically decrease with increased diffusion weighting2. As very high strength (300 mT/m) 
gradients have recently become available for diffusion imaging, Eq. (2) becomes the barrier to 
interrogate tissue microstructure at high b-values3. Here, we present a new way to interpret and 
estimate kurtosis as anomalous subdiffusion, without restrictions on the maximum b-value. 
Methods In anomalous diffusion theory, the mean squared displacement (MSD) is described by 
Eq. (3) where D is the diffusion coefficient, Γ is the generalized form of the factorial function 
defined for real numbers, and α is the power law parameter which describes the rate of 
subdiffusive growth when α<1. Note that when α=1 in Eq. (3) the MSD simply reduces to 2Dt to 
describe the linear case of Gaussian diffusion. In q-space, the diffusion MRI signal attenuation 
can be modeled by Eq. (4), where ݐ ؠ ∆ െ  ,and Eα is the Mittag-Leffler function (MLF) 3/ߜ
which is an analytic and monotonically decreasing function for all arguments4,5. Eq. (4) can be 
expanded as a Taylor series to compute higher moments as shown in Eqs. (3) & (5) and by 
insertion into Eq. (1), the excess kurtosis of the MLF, KMLF, is defined in Eq. (6). When α=1, for 
example, the MLF reduces to a monoexponential decay and KMLF=0, pertaining to Gaussian 
diffusion. Eq. (6) is plotted in Fig. 1, which shows a nearly inverse linear relationship between 
KMLF and α. Therefore, the monotonicity of the MLF provides an explicit means to interrogate 
the kurtosis of the pdf for the diffusion propagator without analytic limitations on q or Δ. 
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To compare the estimates of kurtosis as computed by Kapp and KMLF, one chronic, ischemic stroke 
subject was scanned on a 3T Siemens Trio system. DW SE-EPI experiments were performed 
with the following parameters: TE=102 ms, TR=6 s, Δ=41.2 ms, δ=40.6 ms, b-values = 0, 500, 
1000, 3000, 4000 s/mm2, 3 diffusion weighted directions, NA=6, in-plane resolution = 2x2 mm, 
slice thickness=4 mm, 20 slices, scan time~6 min. The data were Rician noise corrected using an 
estimate of the signal variance in the right ventricle and then co-registered to the b=0 s/mm2 
image using SPM8. Using the Levenberg-Marquardt algorithm in Matlab, the trace of the 3 
diffusion weighted direction data was fitted on a voxel-wise basis to Eqs. (1) and (3). The 
b=4000 s/mm2 data was excluded for the fits to Eq. (1) to ensure a valid sample regime for the 
parabolic form2. Following estimations of α, the kurtosis, KMLF, was computed using Eq. (5).  
Results In Table 1, the values for D estimated from Eq. (2) are similar to D from Eq. (4). For 
completeness, D from Eq. (4) is shown in Fig. 2, however little contrast is visible between the 
WM and GM. In Fig. 2, for the α map, the contrast between the WM/GM is clearly visible with 
the WM demonstrating more subdiffusive behavior compared to the GM. The KMLF map also has 
clearly visible WM/GM contrast and appears as a negative image to the α map. The Kapp map has 
similar WM/GM contrast to KMLF, albeit with a smaller dynamic range of values between the 
tissue types, as summarized for the regions of interest (ROI) comparisons in Table 1.  
Discussion Utilizing the moment expansion in Eqs. (3) and (5) provides an intimate link between 
kurtosis to subdiffusion through the Γ function and α. However, this link does mean that Eq. (1) 
and Eq. (4) are interchangeable fitting functions, as each mathematical approach is a means to 
estimate the true kurtosis of the pdf. In Table 1, if we compare the estimated values for KMLF and 
Kapp in the ROIs, there is a consistent trend in which the WM exhibits higher kurtosis than the 
GM, and the IT and CSF have the lowest values. However, KMLF estimates a wider dynamic range 
of kurtosis values for the ROIs compared to Kapp such that the ratio for the mean values of WM to 
GM is ~2.27 for KMLF and ~1.71 for Kapp. One possible reason for the difference between KMLF 
and Kapp could be explained by considering that α operates on both the second and the fourth moments in Eqs. (3) and (5), whereas, in contrast, Eq. (2) defines the 
second moment as 2Dt and then carries the multiplicative factor into the fourth moment. Nevertheless, over a limited range of b-values, Eqs. (1) and (4) can produce 
similar, but not identical, estimations of kurtosis. As Eq. (4) is not bounded by a maximum b-value, the MLF provides the opportunity to more completely sample        
q-space to estimate the true kurtosis of the diffusion propagator, so long as there is sufficient signal-to-noise.  
Conclusion We have shown a model for anomalous diffusion can provide an alternate, yet congruent approach to Eq. (1) to perform diffusion kurtosis imaging 
measurements. Current work is underway to apply Eq. (6) to extract physical properties of tissue microstructure (e.g. surface to volume ratio). Future work will 
characterize the directional dependence of estimations for α and KMLF with respect to Kapp in tensor representations. 
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Table 1: ROI mean and standard deviation values for                
D (reported in units of x10-3 mm2/s), α, KMLF, and  Kapp. 
 WM GM IT CSF 

D (Eq. 2) 0.76 ± 0.04 0.82 ± 0.06 3.25 ±  0.11 3.31 ±  0.15 

D (Eq. 4) 0.74 ± 0.03 0.86 ± 0.05 3.01 ±  0.11 3.15 ±  0.13 

α 0.49 ± 0.04 0.77 ± 0.03 0.94 ± 0.03 0.97 ± 0.01 

KMLF 1.75 ± 0.12 0.75 ± 0.09 0.18 ± 0.09 0.12 ± 0.03 

Kapp 0.99 ± 0.07 0.58 ± 0.05 0.25 ± 0.03 0.19 ± 0.10 

A 

Fig. 1: Plot of Eq. (6) showing KMLF versus α. 

Fig. 2: Parameter maps for an axial slice through the brain of 
a chronic ischemic stroke patient with ROIs in the A) white 
matter (WM), B) gray matter (GM), C) ischemic tissue (IT), 
and D) cerebral spinal fluid (CSF). 
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