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Target Audience Those interested in the characterization of neural tissue microstructure using

new models for the non-Gaussian diffusion signal. 3
Purpose Excess kurtosis, K, is defined as the normalized fourth moment of a probability
distribution function (pdf) with respect to the Gaussian pdf (i.e., K=3), as shown in Eq. (1). The 2.5
first approach to estimate the apparent excess kurtosis, Ky, in non-Gaussian diffusion MRI used
a Taylor series expansion approach to measure the deviation against the Gaussian case of a 2

monoexponential decay, as shown in Eq. (2)". Due to the parabolic form of the argument in Eq.
(2), a limit must be placed on the maximum b-value sampled for the fitting function to 1.5
monotonically decrease with increased diffusion weighting®. As very high strength (300 mT/m) A
gradients have recently become available for diffusion imaging, Eq. (2) becomes the barrier to 1
interrogate tissue microstructure at high b-values®. Here, we present a new way to interpret and
estimate kurtosis as anomalous subdiffusion, without restrictions on the maximum b-value.

MLF

Methods In anomalous diffusion theory, the mean squared displacement (MSD) is described by 0.5

Eq. (3) where D is the diffusion coefficient, I' is the generalized form of the factorial function . . .

defined for real numbers, and o is the power law parameter which describes the rate of 00 0.25 05 0.75 1
subdiffusive growth when o<1. Note that when o=1 in Eq. (3) the MSD simply reduces to 2Dt to o

describe the linear case of Gaussian diffusion. In g-space, the diffusion MRI signal attenuation MLF

can be modeled by Eq. (4), where t = A —6/3 and E, is the Mittag-Leffler function (MLF),
which is an analytic and monotonically decreasing function for all arguments*’. Eq. (4) can be Fig. 1: Plot of Eq. (6) showing Ky versus o.
expanded as a Taylor series to compute higher moments as shown in Eqgs. (3) & (5) and by
insertion into Eq. (1), the excess kurtosis of the MLF, K, is defined in Eq. (6). When o=1, for
example, the MLF reduces to a monoexponential decay and Kw =0, pertaining to Gaussian
diffusion. Eq. (6) is plotted in Fig. 1, which shows a nearly inverse linear relationship between
Kwmir and o. Therefore, the monotonicity of the MLF provides an explicit means to interrogate
the kurtosis of the pdf for the diffusion propagator without analytic limitations on g or A.

K=x%/(x*?-3 (1) 5/50 = exp(—bD + b2D*K,,,/6) (2)
(x2(t)) = 2Dt* /T(a+ 1) (3) S/S0 = E,(—Dg*t%) (4)
(x*(t)) = 24D%t%** /TQRa+1) (5) Kyr =6T%(@+1) /TRa+1)—3 (6)

To compare the estimates of kurtosis as computed by K, and Ky, one chronic, ischemic stroke
subject was scanned on a 3T Siemens Trio system. DW SE-EPI experiments were performed
with the following parameters: TE=102 ms, TR=6 s, A=41.2 ms, 6=40.6 ms, b-values = 0, 500,
1000, 3000, 4000 s/mm?, 3 diffusion weighted directions, NA=6, in-plane resolution = 2x2 mm,
slice thickness=4 mm, 20 slices, scan time~6 min. The data were Rician noise corrected using an
estimate of the signal variance in the right ventricle and then co-registered to the b=0 s/mm?
image using SPMS. Using the Levenberg-Marquardt algorithm in Matlab, the trace of the 3
diffusion weighted direction data was fitted on a voxel-wise basis to Eqgs. (1) and (3). The
b=4000 s/mm” data was excluded for the fits to Eq. (1) to ensure a valid sample regime for the -

parabolic form?>. Following estimations of a, the kurtosis, Kvir, was computed using Eq. (5). Fig. 2: Parameter maps for an axial slice through the brain of
Results In Table 1, the values for D estimated from Eq. (2) are similar to D from Eq. (4). For a chronic ischemic stroke patient with ROIs in the A) white
completeness, D from Eq. (4) is shown in Fig. 2, however little contrast is visible between the ~matter (WM), B) gray matter (GM), C) ischemic tissue (IT),
WM and GM. In Fig. 2, for the o map, the contrast between the WM/GM is clearly visible with ~and D) cerebral spinal fluid (CSF).

the WM demonstrating more subdiffusive behavior compared to the GM. The Ky r map also has
clearly visible WM/GM contrast and appears as a negative image to the oo map. The K, map has . . 3 2
similar WM/GM contrast to Kuir, albeit with a smaller dynamic range of values bgsween the D (reported in units of x10™ mm’/s), & Ky, and Kuyy

tissue types, as summarized for the regions of interest (ROI) comparisons in Table 1. WM GM IT CSF
Discussion Utilizing the moment expansion in Eqs. (3) and (5) provides an intimate link between D (Eq.2) 0.76 +0.04 0.82+0.06 325+ 0.11 331+ 0.15
kurtosis to subdiffusion through the I" function and o.. However, this link does mean that Eq. (1)
and Eq. (4) are interchangeable fitting functions, as each mathematical approach is a means to D(Eq.4) 0.74+003 086+005 301+0.11 3.15+0.13
estimate the true kurtosis of the pdf. In Table 1, if we compare the estimated values for Ky r and o 049 +004 077+0.03 094 +0.03 0.97 +0.01
K.pp in the ROIs, there is a consistent trend in which the WM exhibits higher kurtosis than the
GM, and the IT and CSF have the lowest values. However, Ky estimates a wider dynamic range Kvip  175£0.12 0.75£0.09 0.18£0.09 0.12+0.03
of kurtosis values for the ROIs compared to Ky, such that the ratio for the mean values of WM to Kipp 099007 058005 025003 0.19+0.10
GM is ~2.27 for Kyir and ~1.71 for Ky, One possible reason for the difference between Kwir
and K, could be explained by considering that o operates on both the second and the fourth moments in Eqgs. (3) and (5), whereas, in contrast, Eq. (2) defines the
second moment as 2Dt and then carries the multiplicative factor into the fourth moment. Nevertheless, over a limited range of b-values, Egs. (1) and (4) can produce
similar, but not identical, estimations of kurtosis. As Eq. (4) is not bounded by a maximum b-value, the MLF provides the opportunity to more completely sample
g-space to estimate the true kurtosis of the diffusion propagator, so long as there is sufficient signal-to-noise.

Conclusion We have shown a model for anomalous diffusion can provide an alternate, yet congruent approach to Eq. (1) to perform diffusion kurtosis imaging
measurements. Current work is underway to apply Eq. (6) to extract physical properties of tissue microstructure (e.g. surface to volume ratio). Future work will
characterize the directional dependence of estimations for o and Kyr with respect to K, in tensor representations.
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Table 1: ROI mean and standard deviation values for
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