
Fig 2: Plots of the fractional difference in D and f compared to the full measurement as well as CVs of D (CVD) and f (CVf) and the total scan time, as function of the # 
of b-values (vertical axes) and # of averages (horizontal axes) for the small ROI (12×12×12 mm3) in the pancreas. Similar results were found for the small ROI  in the 
liver. The black square indicates the setting we selected as optimal. 

Fig 3: Reconstructed 
parameter maps of f and 
D using all data (middle) 
or our selected optimal 
set (5 averages, 12 b-
values) (right) for a 
healthy volunteer. Note 
that maps look similar, 
indicating that measuring
5 averages and 12 b-
values is sufficient for 
IVIM in the pancreas and 
liver. 
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Target audience: Clinical physicists and clinicians involved in optimizing diffusion weighted imaging 
Purpose: The intra-voxel incoherent motion (IVIM) model for diffusion weighted (DW) MRI takes into 
account the effects of perfusion in addition to diffusion. The model is promising as its parameters f (perfusion 
fraction), D (diffusion coefficient) and D* (pseudo diffusion coefficient) can be used for lesion 
characterization, for example in the liver and pancreas, and can possibly enable treatment response 
monitoring.1,2 However, IVIM-measurements take long (≥10 minutes) as images from multiple diffusion 
weightings (b-values) are required to fit the IVIM-model and often multiple images per b-value (averages) are 
required to increase signal to noise ratio. Due to this long acquisition time, the IVIM-model is not widely used 
in clinical practice. Therefore, our aim was to minimize the acquisition time, by determining the minimum 
number of b-values and averages per b-value needed for precise and accurate IVIM-measurements of the 
pancreas and liver. 
Methods: We implemented an abdominal IVIM-imaging sequence and developed an in-house post-
processing toolkit. We scanned 16 healthy volunteers (8 male, mean age 28 years) twice in two sessions, using 
a 3T MRI scanner (Philips Ingenia). Scans were obtained under respiratory triggering using a single-shot 
echo-planar sequence: voxel size 3x3x3.7 mm3, 0.3 mm slice gap, FOV=432x108x72 mm3, TE/TR=44/2300 
ms, BW=62.5 Hz/voxel. We obtained 9 averages (3×3 directions) per b-value for 14 b-values (0, 10, 20, 30, 
40, 50, 65, 80, 100, 125, 175, 275, 375 and 500 s/mm2). In our postprocessing toolkit (Fig 1) all DW images 
were denoised using a Rician adaptive non-local means filter.3 Then, slices with signal drop-out due to cardiac 
motion were removed. Finally, the elastix package was used to perform a mutual information based non-rigid 
registration to deal with the potential limited performance of respiratory triggers, peristaltic motion and eddy 
currents.4 After post-processing we selected regions of interest (ROIs) on the resulting images, containing the 
entire pancreas, the entire liver, part of the pancreas (12×12×12 mm3) or part of the liver (12×12×12 mm3). We averaged all data within each ROI and fitted the IVIM-
model to the data. In these fits, we fixed D* to values obtained from fits of all pancreatic and liver data (D*p=0.0453 mm2/s and D*l=0.0659 mm2/s respectively). To 
study the accuracy of the IVIM model parameters as function of number of averages and b-values taken along, we calculate the deviation of the mean value of D and f 
from the mean D and f determined from the full data set. To study the precision we also do this for the within subject coefficient of variation (CV) of D and f. We also 
determine the total acquisition time. In this analysis, b-values exclusion was done according to the following scheme: 175, 375, 65, 125, 80, 40, 250, 30, 10, 20 and 50 
s/mm2. Finally, we select the optimal combination of b-values and averages by minimizing acquisition time, without compromising in systematic errors and the CVs, 
and generated D and f maps from this limited set. We compared these maps to D and f maps generated using all b-values and averages. 

Results: Taking all b-values and averages into account and fitting the model to the entire pancreas, we found CVs of CVf=0.25 and CVD=0.05 for f and D, respectively. 
For data from the entire liver these values were CVf=0.41 and CVD=0.09. For data from the smaller ROIs, CVs increased to CVf=0.47 and CVD=0.12 for the pancreas 
and CVf=0.51 and CVD=0.14 for the liver. We found a mean D of 0.0013 mm2/s and f of 0.075 for the small ROI in the pancreas and a mean D of 0.0010 mm2/s and f 
of 0.062 in the liver. The CVs, and thus the precision, improved mainly by increasing the number of averages (Fig 2). The fractional deviations depended also on the 
number of b-values taken along (Fig 2). We believe that decreasing the number of b-values leads to underdetermining the IVIM model, which introduced systematic 
errors; this decreased the accuracy and thus increased the fractional deviations. The plots provided here facilitate visualisation of the trade-off between acquisition time 
and robustness for different acquisition strategies. The optimal settings will depend on the users goal. We believed that the combination of 5 averages and 12 b-values 
should give robust IVIM-measurements. Fitting to such a limited set of measurements yielded similar D and f maps when compared to fits to the full set of 
measurements (Fig 3). It has been shown in simulations that a different choice of b-values may improve the robustness of IVIM measurements. Therefore our choice on 
how to delete the b-values could influence the results. However, we looked into 3 different schemes of deleting b-values and found no major differences. 
Conclusion: In this work we show that obtaining 12 b-values with 5 averages yields the best compromise between scan time and data quality for IVIM-measurements 
in the liver and pancreas. Using our approach we have decreased measurement time from 10 minutes to 5 minutes without losing robustness. 
References: 1 A. Lemke et al., Invest. Radiol. 44, 769–75 2009. 2 D.M. Koh, Radiology 272, 307–8 2014. 3 J. V Manj ón et al., JMRI 31, 192–203 2010. 4 S. Klein et 
al., IEEE Trans. Med. Imaging 29, 196–205 2010. 

 
Fig 1: Example images from a slice (c,d,g,h) and 
through slice (a,b,e,f) of the data as acquired (a,c,e,g)
and after post processing (b,d,f,h) for images from 
b=10 s/mm2 (a–d) and b=500s/mm2 (e–h).  
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