Real time interaction with millions of streamlines
Francois Rheault', J ean-Christophe Houde', and Maxime Descoteaux’
! Université de Sherbrooke, Sherbrooke, Quebec, Canada

Target audience — Researchers developing streamlines interaction tools, as well as all medical researchers, physicians and clinicians who need to visualize
massive tractography datasets.

Purpose — This abstract presents a mechanism to significantly improve real-time visualization and interaction with massive streamlines datasets. This method
is able to handle 1M streamlines in a 1mm?® space while keeping interactive framerates for rendering and interactive streamlines selection. Trying to use a fiber
selection mechanism on such a file in current applications is normally limited and handled by 1 of 3 scenarios: 1) the application restricts the number of
streamlines to a specified maximum, 2) the application subsamples the streamlines at loading time (eg. Trackvis [1]) or 3) the application simply stops having
responsive framerates (eg. Fibernavigator [2]). The proposed mechanism takes advantage of the streamlines’ linearity and allows the user to display and
manipulate all streamlines at once. The proposed mechanism is implemented in MI-Brain (www.imeka.ca/mi-brain), a new streamlines visualization and
interaction tool based on the MITK platform [3].

Methods — The core of the mechanism is the implementation, at load time, of a streamline linearization step, as was presented in [4]. In this technique, points
that are almost collinear, up to a specific error threshold, are summarized by only a few points. Using this step, even with a very small error threshold, can
save between 75% and 80% of RAM use, without having any visual impact on the streamlines. Our implementation calculates the distance of each point on
the streamline to a straight line, and the points close enough to the line are discarded. Using this mechanism implies that interaction methods, such as the
selection box for streamlines selection, must be updated to take the sparse nature of the linearized streamlines into account. Most current methods check if the
selection box contains points belonging to a certain streamline to know which fibers are included in the object. With linearized data, the distance between
successive points can greatly vary (instead of having a fixed 0.2mm step for example), and the selection box can therefore contain fewer points than usual,
which would generate missing fibers. To solve this problem, we added a supplementary segments intersection step to the selection procedure, so that the fibers

intersecting the box without having any points inside it will still be detected and [istance | Maximum | Total memory | Loading/initialisation
displayed correctly. For this to be possible, a range around the actual selection box is | ¢hreshold | distance used (MB) time(s)
used to select neighbouring points, from which segments will be computed. The U 1 6255 731
algorithm then checks if those segments intersect the box, using a line-cube intersection NICOMpress 2
test [5]. To reduce computation time, optimizations and some heuristics were put in 0,01 B) 1253 40,2
place to keep the real-time interaction possible. Such heuristics include putting a limit 0,01 10 1187 41,6
on the maximal linearization length to prevent a too large neighbour search range and 0,01 25 1185 42,3
therefore unnecessary intersection testing. 0,02 5 1118 39,6

0,02 10 1046 42,0
Results — With a very small linearization threshold, the difference between compressed 0,02 25 1040 42,9

and uncompressed streamlines is barely visible while, as shown in column 3 of Table 1,
the memory used by the application rapidly drops under 20% of the original level. This
greatly improves the software performance for visualization, as there are less
primitives to send and process on the GPU. The compression slightly increases the
initial loading time. However, when taking into account the overall time between loading starts and the moment when the streamlines can be interacted with
(which also includes transfers to GPU and shader initialization), it is shown that the complete process is shorter when using linearization with a reasonable
threshold (see Table 1, col. 4). Using the adapted selection method is important to ensure no fiber is missed. For example, in Figure 1, a box was put in the
corpus callosum of linearized streamlines. The selection technique based only on points displayed 790 fibers, while selection based on points and segments
displayed 1290 fibers. In that particular case, almost 40% of fibers would be incorrectly missing. The selection time is not impacted for files with less than
500k fibers. For files with over a million fibers, the selection step can slightly reduce the real-time interactivity of the application. However, since no software
can currently load such files, this drawback is acceptable. We successfully loaded, visualized and interacted with a file with 3 million fibers with a 0.5mm step
size. In that case, the memory used was only 5.25 GB after linearization with a 0.02mm threshold, when it should have been at least 32 GB without
linearization.

Table 1: Memory usage and time before interaction with different
compression parameters for a 500k fibers file.

Figure 1: a) subsection of the corpus callosum, white rectangle shows the region that is zoomed; b) uncompressed fibers with classical selection method; c)
compressed fibers selected with intersection method; d) compressed fibers selected with classical selection method.

Conclusion — We presented a load-time compression method to greatly reduce the quantity of points in a tractography file; this enables to have real-time
visualization and interaction with massive streamlines files (small step size, full brain, millions of fibers) without any perceptible change during visualization.
Our method does not restrict what can be loaded by the application and does not affect the original data. We also showed that it is essential to adapt the fibers
selection mechanism to guarantee that all fibers crossing the box will be found. In the future, other algorithms will also need to be adapted to correctly handle
this kind of compression. Some algorithms could even benefit from the compression since lots of points are removed.

References — [1] www.trackvis.org [2] https://github.com/scilus/fibernavigator [3] www.mitk.org [4] Presseau et al., ISMRM 2014. [5] Pharr and Humprheys,
Physically Based Rendering. 2010

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015) 2848.

