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Target Audience: Diffusion MRI researchers who are interested in estimating local fiber orientations accurately with explicit 
consideration of different diffusion compartments with spatially varying parameters. 

Purpose: Spherical deconvolution (SD) of the diffusion-attenuated signal with a fiber 
kernel, which represents the signal response of a single coherent fiber bundle, has been 
shown to yield high-quality estimates of fiber orientation distribution functions 
(FODFs) [1]. However, an inherent limitation of this approach is that the fiber kernel is 
assumed to be invariant throughout the image. This has been shown to result in 
spurious FODF peaks as the discrepancy of the fiber kernel with the data increases [2]. 
The SD approach has been recently extended [3] to include kernel functions of not only 
the white matter (WM), but also the gray matter (GM) and the cerebrospinal fluid 
(CSF). However, the same problem persists because the kernels, once their parameters 
have been determined, are also fixed and assumed to be invariant. We propose here a 
method to use collaboratively multiple fiber kernels for robust FODF estimation.  

Methods: Data – For reproducibility, diffusion weighted (DW) data from the Human 
Connectome Project [4] were used. The 1.25 × 1.25 × 1.25 mm3 data were acquired 
with diffusion weightings of b = 1000, 2000, and 3000 s/mm2 each applied in 90 
directions. 18 baseline images with low diffusion weighting were also acquired. All 
images were acquired with reversed phase encoding for correction of EPI distortion. 
FODF Estimation – We estimate the FODF by using multiple groups of kernels (a 
group each for a WM direction, GM, and CSF) via solving an L0-norm group-
penalized least-squares problem. Each WM group consists of unidirectional axial-
symmetric diffusion tensors with a range of possible axial and radial diffusivities. The 
GM and CSF groups consist of isotropic tensors with diffusivities of GM kernels set 
lower compared with CSF, consistent with what was observed in [3]. These kernel 
functions are sampled in a number of directions and diffusion weightings according to 
the sampling pattern of the DW data and are collected as columns in a matrix A. The 
FODF for each voxel is then estimated by solving min௙‖݂ܣ െ ଶଶ‖ݏ ൅ ଵߣ ∑ ሺฮܫ ௃݂ሺ௚ሻฮଶሻ௚∈ீ ൅ ଶ‖݂‖଴ߣ , where ݏ is the signal vector, ݂ is a 

vector representing the volume fractions associated with the kernel functions, ܬሺ݃ሻ is 
the set of indices of columns in ܣ that correspond to the kernels in group ݃, ܫሺݖሻ is an 
indicator function that returns 1 when ݖ  is non-zero, and ߣଵ  and ߣଶ  are the tuning 
parameters. We define G ൌ ሼWMଵ,WMଶ,… ,WMே, GM, CSFሽ, where WM௞  indicates a 
group of anisotropic tensors oriented along the ݇-th sampling direction of the FODF. The FODF, discretized in ܰ directions, is 
computed simply by summing the volume fractions of the kernels within each of the ܰ WM groups. The optimization problem is 
solved using iterative hard thresholding [5]. 

Results: We compared the proposed method with a state-of-the-art method [6] based on reweighted L1 minimization (approximates 
L0 minimization). Note that we solve an L1-norm penalized problem instead of a constrained problem as in [6] to avoid having to 
explicitly select the sparsity to limit the number of active compartments. The compartment volume fraction maps (Fig. 1) indicate that 
the proposed method yields cleaner compartment estimates especially for cortical gray matter. In contrast, the competing method gives 
results that are contaminated, especially by the CSF compartment. This contamination results in inaccurate WM FODF estimates in 
the WM-GM interface (Fig. 2), causing false-positive peaks and hence greater directional uncertainty. Accumulation of FODF errors 
results in errors and irregularities in tractography (Fig. 3). 

Discussion: We have shown that instead of restricting ourselves to one kernel per compartment, it is possible to employ a group of 
kernels per compartment to cater to possible data variation across voxels. The use of L0-norm penalization is motivated by the 
following observations: (1) L1-norm penalization conflicts with the unit sum requirement of the volume fractions, as noted in [6]; (2) 
L1-norm penalization is biased and attenuates coefficient magnitudes [7], resulting in the erosion of FODF peaks. Our results confirm 
our observations and demonstrate that the proposed method improves microstructural and tract estimates. 

Conclusion: Our method provides the flexibility of including different diffusion models in different groupings for robust 
microstructural estimation. Future work includes incorporating complex diffusion models [8] for estimation of subtle properties such 
as axonal diameter. We will also apply our method for investigation of pathological conditions such as edema. 
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Fig. 1: Volume fraction maps. 
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Fig. 3: Tractography based on FODFs. 
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Fig. 2: WM FODFs at WM-GM interface. 
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