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TARGET AUDIENCE: Clinicians and engineers who are interested in the Diffusion-weighted MRL

Purpose: Diffusion-weighted (DW) magnetic resonance imaging is widely used in clinic and research because of its ability to characterize the diffusion of water
molecules within tissue. However, the DW images are usually affected by severe noise especially at high resolution and high b values, and the low signal-to-noise ratio
may degrade the reliability of the subsequent quantitative analysis. Recently, a patch-based higher-order singular value decomposition (HOSVD) method [1] was
proposed to denoise MR images and demonstrated to outperform the well-known BM4D method [2]. Compared with the conventional T1-, T2- and proton density
(PD)-weighted images, DW images may contain more redundant information because that they are usually highly correlated across different diffusion directions. In this
work, we proposed to simultaneously exploit the redundant information along diffusion directions and across spatial domain by using HOSVD in denoising DW
images.

Theory: This section describes the HOSVD-based denoising strategy. Given a noisy (I;xI;X...xIy)-tensor A, its HOSVD can be written as: A = Sx, UV%,UP .. xyU™,
where S is a (I;)xI>x...xIy)-tensor, U”is a orthogonal unitary matrix and x, denotes the n-mode product of a tensor by a matrix U™, The smaller HOSVD coefficients
in S usually correspond to contributions from noise. Thus, an estimate of A with reduced noise can obtained by nullifying the coefficients of tensor S below a fixed

threshold ;= & /210g(11>< Ix--x1I,) and perform inverse HOSVD transform of thresholded tensor: A =§ x;U"x,U?...xyU™, where § is the tensor after

thresholding.

Methods: Fig. 1 shows the flow diagram of the proposed method, which
consists of two levels of HOSVD: the HOSVD of the whole DW image set
and the patch-based HOSVD. Let Y,E R™™¥ denote the noisy DW
magnitude images of K directions and with size HxW. The HOSVD denoising
of the whole DW image set Y, is firstly performed as described in the theory
section to obtain prefiltered images Y, , which will provide more accurate
information to guide the patch clustering and the HOSVD of clustered similar
patches in the following patch-based HOSVD denoising stage. The
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distance between two patches, where p® denotes the size of neighborhood in

the spatial domain. The searching is performed on prefiltered images to
mitigate the impact from noise. After that, the similar patches are stacked into
a 3D tensor G, of size p>xKxL and then the HOSVD method is implemented
to denoise this tensor using the bases trained from the tensor G, consisting of patches on the same locations in the prefiltered images. Finally, the denoised patches are
aggregated to denoised images. Variance stablization transform and its inverse are implemented to deal with the Rician and non-central Chi noise [1].

We evaluate the proposed method on both simulated and real data. The simulated DW images are from an adult mouse diffusion tensor atlas of size 256x256 consisting
of one image with b=0 and 44 images with b=2000s/mm? [3]. The real DW data was acquired on a Philips Achieva 3.0T TX MR scanner (Best, Netherlands) with
4-shot EPI sequence using an 8-channel receiver head coil. One image with b = 0 and 6 images with b = 1000 s/mm? were acquired with parameters: TR/TE = 3000/82
ms, in-plane resolution = 1x 1 mm?, slice thickness = 4 mm, matrix size = 220x220, 14 slices, NEX = 10.

Results: Fig. 2 shows the quantitative comparison of the NLM [4], LR+Edge [3] and HOSVD methods on the simulated data using the peak signal to noise ratio
(PSNR) of DW images and root-mean-square error (RMSE) of fraction anisotropy (FA), which were calculated only in the anatomical region. It can be observed that
HOSVD significantly outperforms NLM and LR+Edge in terms of image PSNR and FA RMSE. Fig. 3 presents the FA maps from the simulated data under a noise
level of 5%. Both RL+Edge and HOSVD produce images with reduced noise and well-preserved edges. The FA map from HOSVD-filtered data is smoother and has
clearer definition of edges than that from LR+Edge-filtered data. Fig. 4 shows that FA map from the HOSVD-filtered images is less noisy than that from the noisy
images and close to the reference FA from the data of NEX = 10.

Conclusion: The proposed HOSVD denoising algorithm has the advantage of simultaneously exploiting redundant information along diffusion directions and across
spatial domain. The results on the simulated and real data show that the proposed algorithm can successfully remove noise in DW images while preserving fine details,
and thus will benefit the estimation of diffusion-related parameters.
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Fig. 1. Flow diagram of the proposed HOSVD alogorithm
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Fig. 2. Quantitative comparison of different denoising methods for
Rician distributed data (left) and noncentral-chi)distributed data (right).
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