

Low-Pass Filter Effect of Finite Gradient Duration on Time-Dependent Diffusion in the Human Brain

Hong-Hsi Lee¹, Lauren M. Burcaw¹, Jelle Veraart¹, Els Fieremans¹, and Dmitry S. Novikov¹

¹Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, United States

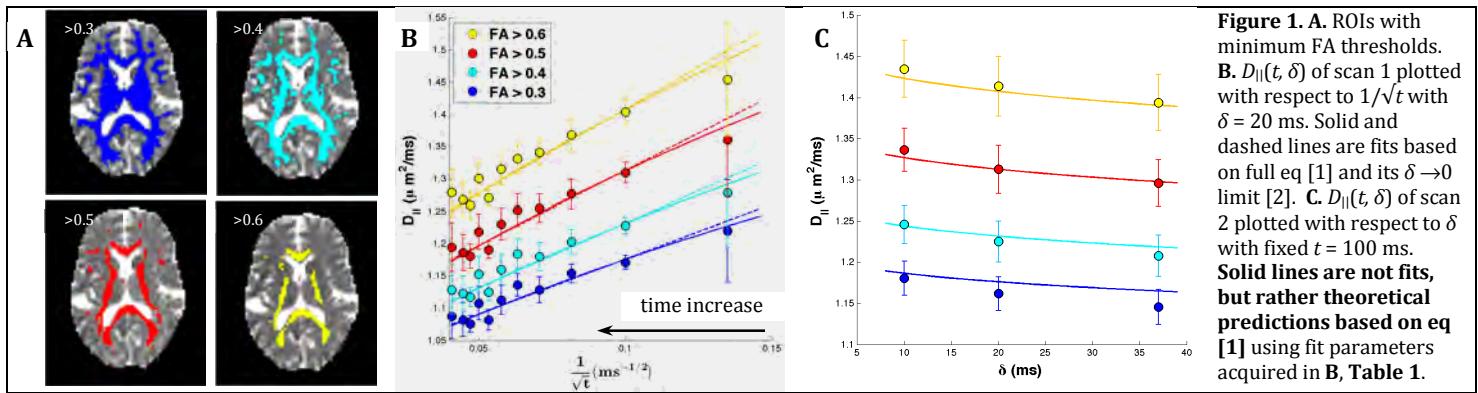
Purpose: To determine brain microstructural parameters from time dependent diffusion in a clinical setting. Time dependence of the diffusion coefficient, $D(t)$, observed with both oscillating^{1,2} and pulse-gradient^{2,3} methods, reflects tissue complexity⁴ on a μm scale. In particular, $D(t)$ can provide novel biophysical contrast by revealing the strength and the correlation length of the restrictions to diffusion.⁴ Here we show that this information can be recovered even when the duration δ of diffusion gradient pulses is not infinitely narrow, and design the framework to extract these parameters from a realistic clinically measured $D(t, \delta)$. Technically, $D(t, \delta)$ can be viewed as the low-pass filtered “ideal” $D(t)$. We apply this framework to human brain DTI measurements³ along white matter tracts, and find that the predicted δ -dependence agrees with experiment without any adjustable parameters, and furthermore obtain the correlation length l_c that matches the distance between varicosities found along axons.⁵

Methods: Theory. Recently, it was shown that the way the instantaneous diffusion coefficient $D_{\text{inst}}(t) = D_\infty + A/t^\vartheta$ approaches its bulk value D_∞ is characterized by the dynamical exponent ϑ related to the disorder class and the spatial dimensionality.⁴ The effect of finite δ can be evaluated via a low-pass filter⁶ $F(\omega) = 16(\sin(\omega t/2)/\omega)^2(\sin(\omega\delta/2)/\omega)^2$ applied to the velocity autocorrelation function $D(\omega)$ in the frequency domain. The convolution of D_{inst} with F , performed via rotating the integration contour in the complex plane of ω , gives

$$D(t, \delta) = D_\infty - \frac{A\vartheta}{\delta^2(t-\delta/3)} [-2f(t) + f(t-\delta) - 2f(\delta) + f(t+\delta)], \text{ where } f(t) = -\frac{1}{\pi} \Gamma(-\vartheta) \Gamma(\vartheta-3) \sin(\pi\vartheta) t^{3-\vartheta}, \text{ and } \Gamma \text{ is Euler's } \Gamma\text{-function,}$$

for all possible values of ϑ . We observe that for $0 < \vartheta < 1$, the asymptotic A/t^ϑ dependence is indeed recovered for $t \gg \delta$; for $\vartheta=1$, the log singularity⁷ $\ln(t/t_c)/t$ changes to $\ln(t/\delta)/t$, thereby masking out any correlation length l_c below $\sim(D_\infty \delta)^{1/2}$ (the effect of the low-pass filter); and for $1 < \vartheta < 2$, the exponent ϑ manifests itself in the $1/\delta^{(\vartheta-1)}$ dependence *on the filter width*, rather than in the $1/t^\vartheta$ dependence on diffusion time. We then apply our general result to $D_{||}(t, \delta)$ measured³ parallel to major axonal tracts, for which the exponent $\vartheta = 1/2$ would reflect short range disorder of restrictions in a one-dimensional geometry.⁴ For $\vartheta=1/2$, the finite- δ measurement would yield

$$D_{||}(t, \delta) = D_\infty + \frac{8A}{15\delta^2(t-\frac{\delta}{3})} \left[-2t^{\frac{5}{2}} + (t-\delta)^{\frac{5}{2}} - 2\delta^{\frac{5}{2}} + (t+\delta)^{\frac{5}{2}} \right] \quad [1]$$


$$\cong D_\infty + \frac{2A}{\sqrt{t}} [1 + O(\sqrt{\delta/t})], \quad \text{for } t \gg \delta. \quad [2]$$

Additionally, we estimate the disorder correlation length $l_c^{||} = 2A/\sqrt{\pi/D_\infty}$ as the average distance between restrictions along axons.

MRI. Diffusion measurements were performed on five healthy subjects (4 males, 1 female, 25-41 years old) using a 3T Siemens Tim Trio with a 32 channel head coil.³ The stimulated echo DTI sequence provided by the vendor (WIP 511E) was used to perform two different scans for each subject. For both scans, we acquired five $b=0$ images and $b=500$ s/mm^2 images along 20 directions with isotropic resolution of $(2.7 \text{ mm})^3$ and a FOV of $(221 \text{ mm})^2$. In **scan 1**, we measured $D_{||}(t, \delta)$ with varied t and a fixed δ : $t = 55-600 \text{ ms}$, $\delta = 20 \text{ ms}$, $\text{TE} = 100 \text{ ms}$, $\text{TR} = 7000-10200 \text{ ms}$; in **scan 2**, we fixed $t = 100 \text{ ms}$ and varied $\delta = 10, 20, \text{ and } 37 \text{ ms}$, with $\text{TE/TR} = 100/7000 \text{ ms}$. To observe the influence of increasing fiber alignments, a series of ROIs were created based on four minimum FA thresholds ranging from 0.3 to 0.6. The ROIs for a representative subject are shown in **Fig. 1A**.

Results and Discussion: Using data in scan 1, we observe that $D_{||}(t, \delta)$ decreases with t , asymptotically consistent with the limit [2], dashed lines in **Fig. 1B**. However, the **systematic bend** in the curves, pronounced at short $t \sim \delta$ (large $1/\sqrt{t}$), reveals the filter effect, captured well via eq [1]. Corresponding fit parameters are shown in **Table 1**, where the estimated values of $l_c^{||}$ increase with fiber alignment. This increase, as well as the $l_c^{||}$ values, are consistent with the $3-6 \mu\text{m}$ spacing between axonal varicosities,⁵ whose projection along the tract direction should increase with FA. Varicosities become more pronounced in stroke⁸ and in traumatic brain injury,⁹ providing potential diagnostic value to the correlation length $l_c^{||}$ and the strength A of restrictions. To further illuminate the δ -dependence, we predicted **scan 2** results based on parameters from scan 1 (**Table 1**), capturing the systematic decrease of $D_{||}(t, \delta)$ with increasing δ (solid lines versus data in **Fig. 1C**). This was done without any adjustable parameters, as the filter properties are known, and tissue properties have been found in scan 1.

Conclusion: The consistency between scans 1 and 2 underscores the validity of the long-time $D(t)$ framework,⁴ the presence of short-range disorder along axons captured by the exponent $\vartheta=1/2$, and the low-pass filter effect on $D(t)$ by finite-duration pulses. Regardless of the finite δ , we are still able to evaluate microstructural parameters, such as correlation length $l_c^{||}$ and the strength A of restrictions along axons, using time-dependence of the clinically measured diffusion coefficient $D(t, \delta)$. Future work will focus on optimizing acquisition protocols to explore the feasibility of potential clinical applications in stroke, TBI, and neurodegenerative diseases.

References: 1. Does, et al. *MRM* 49, 206 (2003). 2. Baron, Beaulieu. *MRM* 72, 726 (2014) 3. Burcaw, et al. *Proc ISMRM* 22, 4434 (2014); submitted, *NI* (2014). 4. Novikov, et al. *PNAS* 111, 5088 (2014). 5. Shepherd, et al. *PNAS* 99, 6340 (2002) 6. Callaghan, *Principles of NMR Microscopy*, Oxford (1994). 7. Burcaw, et al. *Proc ISMRM* 21, 495 (2013). 8. Li, Murphy. *J Neurosci* 28, 11970 (2008) 9. Tang, et al. *Exp Neurol* 223, 364 (2012). Work supported by NIH R01 NS088040.