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INTRODUCTION 
Cardiovascular MRI is commonly accelerated using image models that enforce general mathematical properties of cardiac images (e.g., sparsity, low-

rankness) to enable sparse sampling of ሺܓ,  ሻ-space. Physics-based models (constraints) complement existing sparsity and low-rankness constraints and canݐ
further enhance cardiovascular imaging in terms of speed and reconstruction quality. In this work, we accelerate 4D flow imaging using an image model 
incorporating conservation of mass, conservation of momentum, and known physical transport properties of blood. This image model is generated by 
integrating computational fluid dynamics (CFD) into image reconstruction: we solve the Navier-Stokes equations—with boundary conditions reconstructed 
from limited ሺܓ,  .ሻ-space data—and reconstruct 4D flow-sensitive images using the CFD solution as a constraintݐ

 
METHODS 

In vivo data were collected on a Siemens TRIO 3 T scanner using ECG gating and respiratory navigation. A sagittal 3D volume was imaged using the 
method described in [1] with temporal resolution = 40.8 ms, cardiac phases = 21, TR = 5.1 ms, TE = 2.4 ms, FA = 7°, FOV = 250 mm × 330 mm × 55 mm, 
matrix size = 120 × 160 × 26, spatial resolution = 2.1 mm × 2.1 mm × 2.1 mm, and ܸୣ ୬ୡ = 1.5 m/s. Reference images and velocity-encoded images in three 
directions (i.e., images acquired with referenced four-point encoding) were densely sampled in ሺܓ,  .ሻ-space, resulting in a total scan time of 44 minݐ

To evaluate the proposed method, all data were retrospectively undersampled in ݇௫, ݇௬, and ݐ according to a uniform random distribution, except for a   

5 × 5 region at the center of ሺ݇௫, ݇௬ሻ-space that was densely sampled to allow temporal subspace estimation [2]. Velocity-encoded data were undersampled by 

a factor of 12, and reference data were undersampled by a factor of 4, resulting in a total acceleration factor of 8 and an equivalent scan time of 5.5 min. 
Reference images ߩ୰ୣ୤ሺܚ,  ୰ୣ୤ is the܌ ሻ were reconstructed using joint sparsity and low-rank/subspace constraints [3]: i.e., according to Eq. 1, whereݐ

sparsely sampled reference data, ܵ୰ୣ୤ is the estimated temporal subspace, Ω is the sparse sampling operator, and ܶ is a sparsifying transform. Flow regions 

were identified from the angiogram ܾሺܚሻ ൌ ඥ∑ ሻܚ௜ሺߩ̅| െ ሻ|ଶ௜ܚ୰ୣ୤ሺߩ̅ , where ̅ߩ୰ୣ୤ሺܚሻ is the temporal mean of the reconstructed reference images and where ሼ̅ߩ௜ሺܚሻሽ௜ୀଵଷ  (the temporal means of the velocity-encoded images) were reconstructed using a sparsity constraint on ܾሺܚሻ (i.e., according to Eq. 2). 
 argminఘ౨౛౜ሺܚ,௧ሻ∈ௌ౨౛౜ ∑ ฮ܌୰ୣ୤ െ Ω൛ ,ܚ୰ୣ୤ሺߩሼܚ࣠ ሻሽൟฮଶଶ௜ݐ ൅ ,ܚ୰ୣ୤ሺߩሼܶ‖ߣ ሻሽ೔సభయܚሻሽ‖ଵ   (1) argminሼఘഥ೔ሺݐ ∑ ฮ̅܌௜ െ Ωഥ൛ ሻሽൟฮଶଶଷ௜ୀଵܚ௜ሺߩሼ̅ܚ࣠ ൅ ∑ߣ ඥ∑ ௠ሻܚ௜ሺߩ̅| െ ௠ሻ|ଶଷ௜ୀଵ௠ܚ୰ୣ୤ሺߩ̅    (2) 

 
We then used CFD to generate priors for the 4D velocity maps. We constructed a 3D mesh of the vessel walls from the angiogram ܾሺܚሻ using ParaView 

(Kitware Inc.), which served to define no-slip boundary conditions in our flow model. Velocity maps from one axial slice (analogous to one sequence of 2D 
velocity-encoded images) were incorporated into the model as additional boundary conditions. The kinematic blood viscosity was assumed to be ν = 3.3 

mm2/s, and each outlet was modeled to have a constant pressure gradient. Full 4D velocity maps ሼݒ୫୭ୢ,௜ሺܚ, ሻሽ௜ୀଵଷݐ  were generated by solving the Navier-
Stokes equations for unsteady, incompressible, laminar flow in OpenFOAM (OpenCFD Ltd.). 

Finally, we reconstructed each velocity-encoded image ߩ௜ሺܚ, ,ܚ୫୭ୢ,௜ሺߩ ሻ usingݐ ሻݐ ൌ ,ܚ୰ୣ୤ሺߩ ሻݐ exp൫݆ݒߨ୫୭ୢ,௜ሺܚ, ୣܸ/ሻݐ ୬ୡ	൯ as prior information: 

 argminఘ೔ሺܚ,௧ሻ∈ௌ೔ ∑ ฮ܌௜ െ Ω൛ ,ܚ୰ୣ୤ሺߩሼܚ࣠ ሻሽൟฮଶଶ௜ݐ ൅ ,ܚ௜ሺߩฮܶ൛ߣ ሻݐ െ ,ܚ୫୭ୢ,௜ሺߩ  ሻൟฮଵ   (3)ݐ

RESULTS 
Figure 1 shows boundary condition geometry defined from ܾሺܚሻ and the single-slice 2D images. Figure 2 shows example slices of ݒ௭ maps from the 

fully-sampled scenario, from a low-rank- and sparsity-constrained reconstruction of the sparse data, and from a reconstruction using the proposed method. 
Figure 3 shows pathlines calculated from each set of results using ParaView. Where relevant, the results in all figures used rank = 11 and the sparsifying 
transform ܶ ൌ ௧࣠ (the temporal Fourier transform). 
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Fig. 2:  Example slices from ݒ௭ maps. The proposed method 
reconstructed high-quality images from 1/12 of the velocity-

encoded data and 1/4 of the reference data. 
Fig. 1:  Example bound-
ary condition geometry 

Fully Sampled Low-rank + Sparsity Proposed Method 
Fig. 3:  Example pathlines at one time point 

 
CONCLUSION 

We present a novel approach to high-speed 4D flow imaging incorporating a physics-based flow model. Our preliminary results indicate that the 
proposed method far outperforms state-of-the-art methods enforcing mathematical properties (such as sparsity and low-rankness) alone. The proposed 
method’s equivalent scan time of 5.5 min represents a significant time savings over the fully sampled scenario’s 44 min, but even further acceleration may be 
possible by leveraging parallel imaging or with improved flow models (e.g., models incorporating turbulence and/or patient-specific viscosity measurements). 
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