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Introduction Myocardial blood flow (MBF) changes are often associated with, and occur before detectable structural or
functional alterations in cardiac diseases. Intravoxel incoherent motion (IVIM) is a diffusion-like phenomenon that is
sensitive to tissue microcirculation (1), which depends on the vascular volume fraction (VF) and the mean speed of capillary
blood flow quantified as the pseudo diffusion coefficient (D*). Despite of recent studies that measured IVIM in beating
hearts (2,3), the relationship between IVIM and the underlying myocardial capillary organization, which has implications for
in vivo microstructural measurements based on diffusion MRI or diffusion tensor imaging (4), remain incompletely
understood. In this study IVIM was investigated in an animal model of isolated, arrested perfused hearts as functions of
precisely controlled MBF and diffusion encoding direction. The IVIM parameters were directly correlated to independent
measure of MBF using arterial spin labeling (ASL) (5).
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used to estimate the IVIM parameters D, D* and f as described recently
(8). Separately, MBF was estimated from the ASL image intensities
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MBF, whereas only the parallel D* correlated significantly with MBF. Figure 2. Scatter plots of ASL-derived MBF and the VF
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Discussion and Conclusions The behaviors of D* with respect to D~ (d) perpendicular to myofibers. The r? and associated

myofiber orientation and MBF indicate that blood flow is faster in the P-values are included with each graph.

direction parallel than perpendicular to myofibers, which is consistent with

previous reports that capillaries in the heart follow the myofiber orientation (10). The VF was found to depend only on MBF
but not myofiber orientation. Although the lack of fiber orientation dependence is in contrast to a previous study (2),
intuitively, VF is a scalar measurement of compartmental size, and as such it should not depend on encoding direction. In
conclusion, the results indicate that IVIM parameters measured in the perfused myocardium vary as function of degree of
microcirculation and myofiber orientation in fashions that are consistent with the known anatomy and circulation physiology
of the myocardium.
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