

Utility of Multi-slice T1 Mapping by using Slice Interleaved T1 (STONE) Sequence for the Detection of Diffuse Myocardial Fibrosis in Patients with Hypertrophic Cardiomyopathy

Shingo Kato¹, Roujol Sébastien¹, Jihye Jang¹, Basha Tamer¹, Berg Sophie¹, Kissinger Kraig¹, Goddu Beth¹, Evan Appelbaum¹, Martin Maron², Warren J Manning³, and Nezafat Reza³

¹Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States, ²Division of Cardiology, Tufts Medical Center, Boston, Massachusetts, United States, ³Department of Medicine and Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States

Target Audience

Scientists and clinicians who are interested in myocardial T1 mapping.

Purpose/Introduction

There have been conflicting reports on the presence of abnormal T1 or extra-cellular volume (ECV) in patients with hypertrophic cardiomyopathy (HCM) [1, 2]. In HCM patients, there are significant regional variations in wall thickness and fibrosis, which necessitates a volumetric coverage. However, current T₁ mapping sequences allow only a single slice per breath-hold, therefore for a full coverage of LV for T1 and ECV mapping with 10 slices, 20 breath-holds are needed. This results in significant burden to the patients and significant additional scan time. We have recently developed a free-breathing slice-interleaved T1 (STONE) mapping sequence, which allows T1 mapping with complete coverage of LV during free-breathing in 1:30 min [3]. The aim of this study was to assess the utility of STONE sequence for detection of regional native T₁ abnormality in HCM patients.

Materials and Methods

Thirteen known HCM patients (mean age: 57 ± 16 years-old, 9 male) were included in the current study. By using 1.5T MR scanner with a 32-channel cardiac receiver coils, we acquired cine MRI, late gadolinium enhanced (LGE) MRI and native T1 mapping by STONE sequence (segmented bSSFP imaging readout with following parameters: 5 slices, TR/TE=2.8/1.4 msec, flip angle=70, FOV=360x351mm², voxel size=2.1x2.1 mm², slice thickness=8 mm, TFE factor=86, SENSE factor=2). We measured native T1 time of 16 myocardial segments from 3 slices (basal-, mid- and apical-slice) by using in-house developed software (MediaCare). We visually evaluated the presence or absence of myocardial enhancement on LGE MRI. Elevated T1 time was defined as >1130 msec, which was +2SD of native T1 time by STONE sequence in healthy volunteer (mean T1 time in healthy volunteers: 1090 ± 20 msec).

Results

Left ventricular ejection fraction was $66 \pm 7\%$ and LV mass was 149 ± 47 g. Myocardial enhancement was found in 13 segments from 3 patients on LGE MRI. Mean T1 time of segments with enhancement on LGE MRI was 1163 ± 40 msec. Of 195 segments without enhancement on LGE MRI, 74 (38%) segments showed elevated T1 time. Mean T1 time of 74 segments with elevated T1 time was 1178 ± 37 msec, which was similar to T1 time of 13 segments with enhancement on LGE MRI (1178 ± 37 msec vs 1163 ± 40 msec, $p=0.14$). Of 74 segments with elevated T1 time, 24 (32%) segments were located in basal-slice, 31 (42%) segments in mid-slice and 19 (26%) segments in apical-slice, respectively.

Conclusions

Our data suggests that substantial number of segments with elevated T1 time in HCM patients would be missed by single-slice T1 mapping approach. Multi-slice T1 mapping by using STONE sequence could be advantageous to overcome limited cardiac coverage of conventional single-slice T1 mapping technique and to accurately detect the diffuse myocardial fibrosis in HCM patients.

Acknowledgements

Shingo Kato, MD has received scholarship from Banyu Life Science Foundation International. Grant support from NIH R01EB008743 and Samsung Electronics.

References

[1] Puntmann et al., JACC cardiovascular imaging, 2013, [2] Brouwer et al., JCMR 2014, [3] Weingärtner et al., MRM, 2014

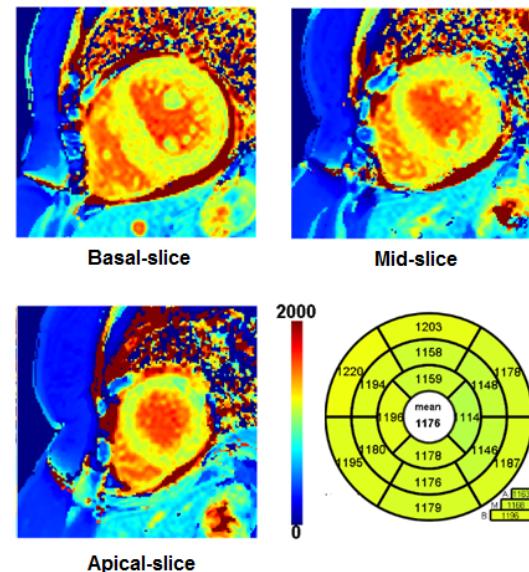


Figure 1. Multi-slice native T1 mapping images by using STONE sequence in a HCM patient.

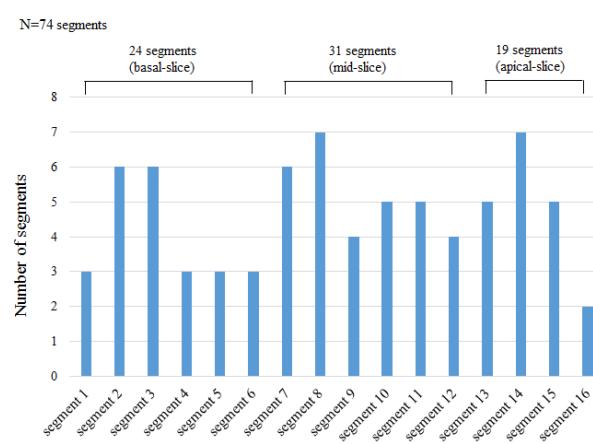


Figure 2: Distribution of segments with elevated T₁ time on 16 segment-model in HCM patients.