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INTRODUCTION ଵܶ mapping of the myocardium shows great promise for quantitative characterization of myocardial tissue. For example, quantification of myocardial ଵܶ both 
before and after contrast agent administration allows measurement of the extracellular volume fraction, allowing identification of global abnormalities where qualitative 
imaging cannot. Unfortunately, parameter mapping increases the already-challenging data acquisition requirements of cardiovascular imaging, requiring multiple 
contrast weightings in order to extract parameter values. The partial separability (PS) model [1] has previously been shown as effective for reducing the data acquisition 
requirements of static parameter mapping; here we extend the PS model to accelerate variable-flip-angle dynamic 3D ଵܶ mapping using a time-varying subspace. 

METHODS 
We model the image function as partially separable in space, time, and flip angle [1]: ܚ)ߩ, ,ݐ (ߙ = ෍ ෍ ෍ ܿℓ௠௡ݑℓ(ܚ)ݒ௠(ݐ)ݓ௡(ߙ)ே
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This decomposition can be viewed as representing ߩ as a low-rank tensor, or more precisely, as a rank-(ܮ, ,ܯ ܰ) tensor [2]. This model motivates a data acquisition 
strategy wherein we collect navigator data by densely sampling (ܓ, ,ݐ ,ܓ) space over limited regions of-(ߙ ,ܓ) space and-(ݐ  space, as well as imaging data by sparsely-(ߙ
sampling the remainder of (ܓ, ,ݐ  .space-(ߙ

For the basic PS model, it is common to determine the subspace structure from the singular value decomposition (SVD) of a Casorati matrix containing navigator 
data. For this higher-order PS model, the navigator data from the densely sampled (ܓ, ,ܓ) space and-(ݐ  space locations enable the definition of two “Casorati-(ߙ
tensors”. We  collapse the Casorati tensors along different dimensions (either the ݐ or ߙ dimensions), forming two Casorati matrices: ۱ଵ, the jth column of which 

contains the samples  ݀ ቀ൛ܓ௣ൟ௣ୀଵ௉ , ,௝ݐ ൛ߙ௣ൟ௣ୀଵ௉ ቁ, where ൛൫࢑௣, ௣൯ൟ௣ୀଵ௉ߙ
 is the set of (ܓ,  space locations that contain data from all time points; and ۱ଶ, the ݆th column of-(ߙ

which contains the samples ݀ ቀ൛ܓ௤ൟ௤ୀଵொ , ൛ݐ௤ൟ௤ୀଵொ , ,௝ቁ, where ൛൫࢑௤ߙ ௤൯ൟ௤ୀଵொݐ
 is the set of (ܓ, ܯ space locations that contain data from all flip angles. The-(ݐ  most 

significant right singular vectors of  ۱ଵ yield basis functions ሼݒ௠(ݐ)ሽ ௠ୀଵெ ; the ܰ most significant right singular vectors of ۱ଶ yield basis functions ሼݓ௡(ߙ)ሽ ௡ୀଵே . 
It is simple to show that the decomposition in Eq. 1 can be expressed as: ܚ)ߩ, ,ݐ (ߙ = ∑ ,ݐ)ℓ߰(ܚ)ℓݑ ௅ℓୀଵ(ߙ , where ߰ℓ(ݐ, (ߙ = ∑ ∑ ܿℓ௠௡ݒ௠(ݐ)ݓ௡(ߙ)ே௡ୀଵெ௠ୀଵ . Without 

knowledge of the ܿ , we can define ܮ෠ = ܰܯ  functions ෠߰ℓ(ݐ, (ߙ = ෠߰௠,௡(ݐ, (ߙ = (ߙ)௡ݓ(ݐ)௠ݒ  (where ℓ  indexes the Cartesian set of ݉, ݊  pairings). Noting that ൛ ෠߰ℓ(ݐ, ൟℓୀଵ ௅෠(ߙ  defines a tensor-product subspace that contains the subspace spanned by ሼ߰ℓ(ݐ, ሽℓୀଵ ௅(ߙ , we can  use ܚ)ߩ, ,ݐ (ߙ = ∑ (ܚ)ℓݑ ෠߰ℓ(ݐ, ௅෠ℓୀଵ(ߙ  for image 

reconstruction. More specifically, we solve the following optimization problem to recover ሼݑℓ(ܚ)ሽℓୀଵ௅෠  from the imaging data sparsely sampling (ܓ, ,ݐ  :space-(ߙ

arg minሼ௨ℓ(ܚ)ሽℓసభಽ෡ ቯ܌ − Ω ቐ෍ ℱܚሼݑℓ(ܚ)ሽ ෠߰ℓ(ݐ, ௅෠(ߙ
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ଶ + ܴ൫ሼݑℓ(ܚ)ሽℓୀଵ௅෠ ൯, 
where ܌ is the vector of measured data, Ω is the sparse sampling operator, and ܴ is a regularization function, which can be chosen to be a weighted L2 penalty function  
or sparsity-promoting L1 penalty. 

RESULTS AND DISCUSSION 
In order to create a gold standard with biologically relevant ଵܶ variation, we imaged male Brown Norway (BN) rats with 45 min transient left circumflex (LCx) 

coronary artery occlusion followed by re-perfusion. Data were collected on a Bruker Avance AV1 4.7 T / 40 cm scanner with a 4-channel phased array coil. A 0.2 
mmol/kg bolus of gadolinium contrast agent was administered, and four real-time 3D FLASH scans using 22° ,19° ,3° = ߙ, and 28° were collected during the steady-
state of contrast and reconstructed as one extended time sequence using the image model described in [3]. Images were collected with TR/TE = 10/2.5 ms, FOV = 40 mm 

× 40 mm × 24 mm, matrix size = 96 × 96 × 24, and spatial resolution = 0.42 mm × 0.42 mm × 1.0 mm. 

We then performed ଵܶ fitting for one respiratory cycle (89 frames) and generated images for 10 flip angles (2°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, and 45°). We 
compared two navigator sampling strategies: 1) dense sampling of (࢑, ,ݐ space over an 8-(ߙ × 96 × ,࢑) space region; and 2) dense sampling of-ܓ  8 ,ݐ space over a 16-(ߙ × 96 ×  space region for only three time points and two flip angles (2°, 45°). The two strategies collect the same amount of navigator data. We randomly-ܓ  16
undersampled the remainder of (ܓ, ,ݐ  .space by a factor of 16.5 for a total undersampling factor of 11.5-(ߙ

Figure 1 shows gold standard and accelerated ܴଵ maps for one slice and time point of the image sequence. The regularization function ܴ was chosen to impose 
anatomical edge constraints [4] generated from a composite image as in [5]. Elevated ܴଵ values are visible in the anterior and lateral myocardium, indicating ischemic 
reperfusion injury. Both accelerated image sequences accurately represent ܴଵ. 

CONCLUSION 
This paper presents a novel 

method for accelerated 3D dynamic 
T1 mapping of the myocardium, 
exploiting the tensor structure of the 
underlying multivariate image 
function of space, time, and flip 
angle.  The method will prove useful 
for quantitative characterization of 
myocardial tissue. 
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Fig. 1:  Slices of ܴଵ maps from one time point of (a) the gold standard and 11.5x-accelerated images using 

(a) navigator strategy 1, and (b) navigator strategy 2. (d) and (e) are error maps for (b) and (c), respectively. 
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