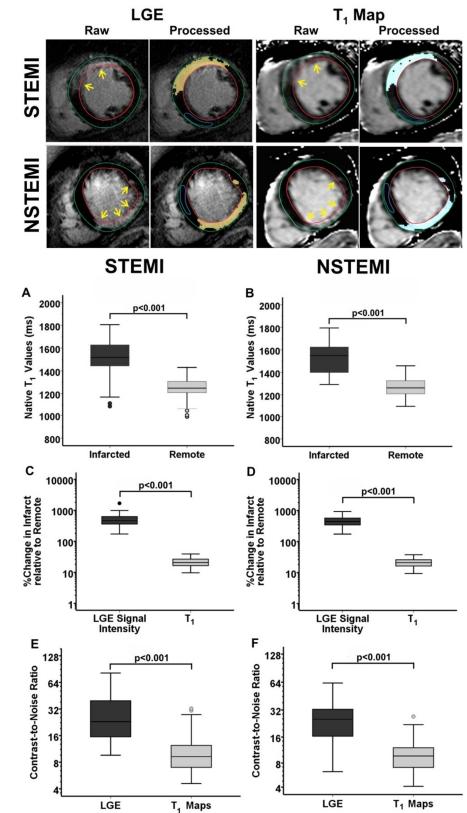


Characterization of Chronic Myocardial Infarctions in Patients with Contrast-Free T1 Maps at 3T

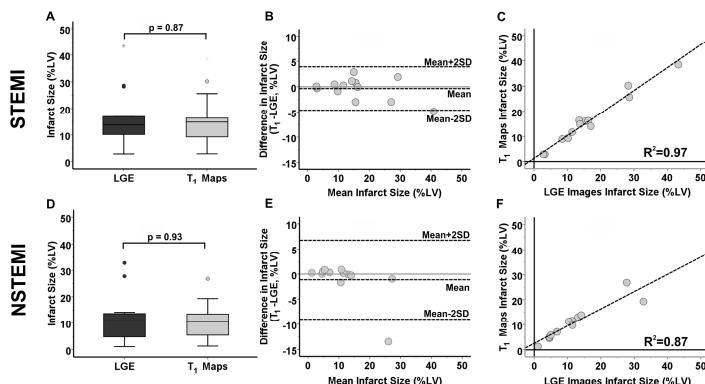
Avinash Kali^{1,2}, Eui-Young Choi³, Behzad Sharif⁴, Young Jin Kim³, Xiaoming Bi⁴, Bruce Spottswood⁵, Ivan Cokic¹, Hsin-Jung Yang^{1,2}, Mourad Tighiouart⁶, Debiao Li¹, Daniel S Berman^{1,7}, Byoung Wook Choi¹, Hyuk-Jae Chang³, and Rohan Dharmakumar^{1,8}

¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States, ²Department of Bioengineering, University of California, Los Angeles, CA, United States, ³Yonsei University College of Medicine, Seoul, Korea, ⁴Siemens Healthcare, Los Angeles, CA, United States, ⁵Siemens Healthcare, Chicago, IL, United States, ⁶Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, United States, ⁷Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States, ⁸Department of Medicine, University of California, Los Angeles, CA, United States

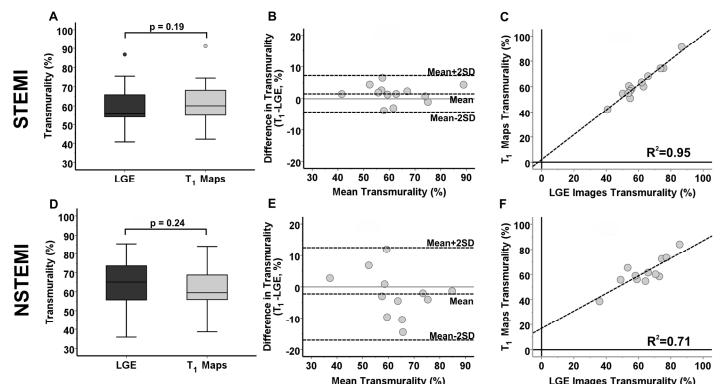

Target Audience – Scientists and clinicians studying myocardial infarction

Purpose – Late Gadolinium Enhancement (LGE) Cardiovascular Magnetic Resonance (CMR) is the gold standard for characterizing chronic myocardial infarctions (cMIs), but it is contraindicated in a significant number of patients due to the co-existence of end-stage chronic kidney disease. We investigated whether native (contrast-free) T₁ maps at 3T can be used to reliably characterize cMIs in two pilot patient populations with prior ST-elevation MI (STEMI) and non-ST elevation MI (NSTEMI).

Methods – Patients with prior STEMI (n=15) and NSTEMI (n=17) underwent CMR at a median of 13.6 years after acute MI. Breath-held 2D native T₁ maps (8 TIs with 2 Look-Locker cycles of 3+5 images; minimum TI = 120ms; TI increment = 80 ms; flip angle = 35°; bandwidth = 1085 Hz/pixel; voxel size = 1.5x1.5x8mm³) and LGE images (IR-prepared FLASH; optimal TI to null remote myocardium; TR/TE = 6.54/3.27ms; flip angle = 20°; bandwidth = 460 Hz/pixel; voxel size = 1.2x1.2x8mm³) were acquired. The location, size and transmurality of cMI were determined using Mean+5SD criterion relative to remote myocardium on both LGE images and T₁ maps, and compared. Native T₁ values of the remote myocardium and cMI territories were measured and compared. Relative to the remote myocardium, percentage change in LGE signal intensity (LGE-SI) and native T₁ value of the cMI territories were measured and compared. Contrast-to-noise ratio (CNR) of LGE images and T₁ maps for detecting cMIs were also measured and compared. Two blinded independent reviewers scored the LGE images and T₁ maps for the conspicuity of cMIs on the following scale: 1 – absent, 2 – uncertain, and 3 – present. Sensitivity and specificity for detecting cMIs on T₁ maps using the Mean+5SD criterion and visual detection were measured.


Results – Representative native T₁ maps and LGE images from two patients, one with prior STEMI, and one with prior NSTEMI are shown in Fig.1. Relative to remote myocardium, median T₁ of the cMI was 271ms (inter-quartile range (IQR) = 197-332ms) higher in STEMI patients (Infarct: 1517ms; Remote: 1247ms; p<0.001; Fig.1), and 229ms (IQR=190-323ms) higher in NSTEMI patients (Infarct: 1549ms, Remote: 1262ms; p<0.001; Fig.1). Median percentage change in LGE signal intensity (LGE-SI) of the cMI relative to remote myocardium was significantly higher than that of percentage change in T₁ in both STEMI (LGE: 465%, T₁: 21%; p<0.001) and NSTEMI (LGE: 441%, T₁: 20%; p<0.001) patients. Median CNR of LGE images was also 2.5-fold higher relative to that of T₁ maps in both STEMI (LGE: 23.1; T₁: 9.2; p<0.001) and NSTEMI (LGE: 25.3; T₁: 9.7; p<0.001) patients. LGE images and native T₁ maps were not different for measuring cMI size (STEMI – LGE: 13.8%; T₁: 14.9%; p=0.87; NSTEMI – LGE: 10.9%; T₁: 10.5%; p=0.93; Fig.2) and transmurality (STEMI – LGE: 55.6%; T₁: 60.1%; p=0.19; NSTEMI – LGE: 64.3%; T₁: 60.9%; p=0.24). Bland-Altman and linear regression analyses showed good agreement between LGE images and T₁ maps for measuring cMI size (STEMI: bias=-0.4±2.1%; R²=0.97; NSTEMI: bias=-1.1±3.9%; R²=0.87) and transmurality (STEMI: bias=1.5±2.9%; R²=0.99; NSTEMI: bias=-2.2±7.4%; R²=0.71). Mean score for LGE images was significantly higher than those for T₁ maps in both cases (STEMI: 1.96±0.93 vs. 1.71±0.71, p=0.021; NSTEMI: 1.83±0.93 vs. 1.66±0.89, p=0.024). Sensitivity and specificity of native T₁ maps for detecting cMIs based on threshold criterion were 93% and 97% respectively (STEMI); and 93% and 92% respectively (NSTEMI). Sensitivity and specificity of native T₁ maps for visual detection of cMI were: 61% and 85% (STEMI); and 67% and 90% (NSTEMI).

Conclusions – Semi-automated threshold analysis of native (contrast-free) T₁maps can reliably detect and characterize cMIs patients with a prior STEMI or NSTEMI. Further increase in image contrast may be necessary to improve visual detection sensitivity of chronic MI territories to the levels observed with LGE.


LGE images from a patient with prior STEMI (infarct age = 18.5 years) and NSTEMI (infarct age = 25.6 years) are shown. Median native T₁ of the infarct was significantly elevated in both STEMI and NSTEMI patients. Percentage change in LGE signal intensity and LGE infarct-to-remote CNR were significantly higher than those of T₁ maps.

INFARCT SIZE COMPARISONS

Figure 2: Native T₁ maps and LGE images were not different for measuring chronic infarct size and transmurality in both STEMI and NSTEMI patients. Bland-Altman and linear regression analyses further showed good agreement for measuring infarct size and transmurality.

TRANSMURALITY COMPARISONS

