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Purpose: Several biological tissues (e.g. - skeletal muscles, white matter tracts in the brain, and myocardium) have anisotropic mechanical properties due to the 
presence of fibers. Furthermore, many pathological states (e.g. - amyotrophic lateral sceloris1, traumatic brain injury2, myocardial infarction3) exhibit directional 
dependencies in stiffness. That is, the disease progression is manifested with an increase in anisotropic stiffness of the tissue. Therefore, non-invasive investigation of 
anisotropic stiffness properties of biological tissues is expected to be critical both for diagnostic and therapeutic purposes. Recently, with the advent of a technique 
called waveguide elastography4-6 the estimation of anisotropic stiffness in biological tissues has become feasible. Waveguide elastography uses magnetic resonance 
elastography (MRE), a phase-contrast MR imaging technique, in conjunction with fiber orientation information (usually obtained using diffusion tensor imaging) to 
estimate anisotropic tissue stiffness. In this study, we use finite element modeling (FEM) to simulate wave propagation in fibers contained in a cylindrical rod to 
validate the feasibility of measuring anisotropic stiffness in an orthotropic material (transversely isotropic) using the technique of waveguide elastography.  

 Methods: Simulation: Frequency response analysis was performed on a 3D cylindrical rod with a diameter of 40 mm and a length of 200 mm in Abaqus 6.13 
(Dassault Systèmes Simulia Corp., Providence, RI, USA). The simulation parameters included: Mesh elements: 12699; Degrees of freedom: 98794; Mesh type: 
hexahedral elastic elements. Fibers in the rod were arranged at an angle with fiber direction coordinates <1, 1, 1>. The material properties of the rod were as follows: 
Young’s modulus in the fiber direction (E33) was 60 kPa, Young’s modulus in the transverse directions is isotropic (E11 and E22) with 18 kPa each, shear modulus  in 
each direction i.e. G12, G23 and G31 were 6.04 kPa, 7.85 kPa and 7.85 kPa, respectively. The Poisson’s ratio in ν12, ν23 and ν31 was 0.49, 0.147 and 0.147, respectively. 
The material had a density of 1000 kgm-3 and a damping factor of 0.05. The face of the cylinder on the far end was constrained. Compressional (in <0, 0, 1> direction) 
and shear (in <0, 1, 0> direction) actuation with a frequency of 100Hz was applied to the near face of the cylinder to generate complex wave propagation as shown in 
the figure below. The cylindrical rod of fibers is selected because it replicates the structure of muscle fiber bundles which act like waveguides for anisotropic wave 
propagation. The shape and size of the waveguide (rod) induce an effective wave velocity that is indirectly dependent on the intrinsic property of the material7. For a 
thin rod approximation, effective velocity is √(E⁄ρ), where E is the Young’s modulus and ρ is the density of the material. Based on these effective velocity estimates of 
the expected longitudinal and transverse wavenumbers (k) were calculated. Finally, the effective wavenumbers were used to estimate the expected effective 
compressional and shear stiffness coefficients and these values have been provided in Table 1. Analysis: The displacement fields generated in FEM were re-constructed 
using MATLAB (Mathworks, Natick, MA) at an isotropic imaging resolution of 2x2x2 mm3 (FOV: 256x256x256 mm3, imaging matrix : 128x128x128). The fiber 
orientation was used to generate a local coordinate system (n1, n2, n3) for each imaging voxel, where n3 corresponded to the fiber axis (<1,1,1>) on the local coordinate 
system and n1 and n2 corresponded to the other two directions orthogonal to n3. A spatial-spectral filter based on the fiber direction was defined and applied on the first 
harmonic displacement data to identify displacements in particular directions defined by the local coordinate system. Simultaneously, Helmholtz decomposition was 
performed to separate the total field into its longitudinal and transverse components. Finally, an orthotropic inversion4 was implemented to evaluate the compressional 
(C11, C22, C33) and shear (C44, C55, C66) complex stiffness values along the three different directions defined by the fibers of the cylindrical rod. 

 Results: The FEM generated thin-rod model, as well as the corresponding wave 
propagation and stiffness measurements using waveguide elastography are shown in the 
figure below. The wave propagation images demonstrate the complex wave pattern 
generated in the x, y and z directions when excited with a shear and compressional source 
at a frequency of 100 Hz. Wavenumbers in each direction obtained from the corresponding 
wave images are shown in Table 1. Based on this initial observation, a spatial spectral 
filter with a bandwidth of ± 20 centered on the observed wavenumber was designed and 
implemented to estimate the stiffness coefficients. The mean and standard deviation of the 
stiffness measurements observed in the compressional (C11, C22, C33) and transverse (C44, 
C55, C66) directions along the three different axes defined by the fibers of the cylindrical 
rod are provided in Table 1, and an example of stiffness maps from one of the slices is 
shown in the figure.   

Conclusion: Our FEM simulation results validate that waveguide elastography 
can successfully estimate anisotropic stiffness in an orthotropic model 
(transversely isotropic). However, for these simulations to have any translational 
value, further investigation is necessary to study the stiffness pattern in healthy 
and diseased conditions. 
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  m-1 kPa m-1 kPa 

C11 148 18.02 138 21.66 ± 0.34 
C22 148 18.02 128 21.58 ± 0.17 
C33 81 60.2 87 62.18 ± 4.66 
C44 226 7.73 250 8.115 ± 0.9 
C55 226 7.73 204 8.115 ± 1.1 
C66 257 5.98 255 5.83 ± 0.06 

Table 1 
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