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Target Audience:  Clinicians and scientists interested in magnetic resonance elastography (MRE) or image reconstruction theory. 
Purpose:  MRE is an increasingly popular magnetic resonance imaging (MRI) application where mechanically induced motion is estimated from a time-encoded series 
of phase-contrast images [1] and used to generate quantitative spatial maps of tissue stiffness [2]. Like most dynamic/parametric applications, MRE has some flexibility 
regarding acquisition parameter assignment. For motion-encoding gradients (MEG) – a key element of MRE – the user controls the number of phase offsets, motion-
encoding directions (ࡰ א ሾ૚, ૜ሿ), and excitations (NEX), MEG polarities, use of reduced [3] or fractional encoding [4], and execution of mono- or multi-directional 
encoding (e.g., Tetrahedral [5], SLIM [6]). These degrees of freedom have bred variability in how MRE data is acquired within and across research groups, and sparked 
debate over which protocols are “better” than others. Objective settlement of such debates requires comparison of concrete performance measures. Effort towards this 
direction has been made (e.g., [7,8]); however, all optimization and valuation platforms developed so far start with the motion-induced phase signal. This is problematic 
for two reasons: 1) the signal dependence and spatial non-uniformity of phase noise [9] compromises the accuracy of statistical characterization; and 2) ignoring spin 
density and static phase information results in an underestimation of MRE signal processing complexity. In this work, starting from the raw, complex MR image series, 
we derive the Cramer-Rao Lower Bound (CRLB) for the harmonic signal, which completely describes mechanically induced motion in single-frequency, steady-state 
MRE. The CRLB defines the minimum achievable covariance of any (unbiased) harmonic estimator and, consequently, the performance limit of an experimental setup. 
We then identify the minimum number of data samples needed for complex harmonic estimation to be well-posed.  Finally, we experimentally validate the harmonic 
CRLB across a range of acquisition settings to demonstrate its predictive accuracy. 
Methods: The signal associated with a single voxel within a steady-state MRE image series 
can be modeled as ࢌሺ݊ሻ ൌ ሽሽࣁࡳࢀ௡ࢾሼࢋࡾexp{j ࢓ ൅ ݊ ሺ݊ሻ, whereࢠ א ሾ૚, -௡ is Kroneckࢾ ,is the (complex-valued) non-motion-encoded transverse magnetization ࢓ ,ሿ is the time indexࡺ
er’s delta, ࢠ is zero-mean proper complex Gaussian noise with channel variance ࣌૛, ࣁ is the 
length-ࡰ (complex-valued) harmonic, and ࡳ is a ࡺ ൈ  matrix that describes all motion ࡰ
encoding information (e.g., directions, phase offsets, polarities, NEX). For example, in 
SLIM [6], ࡳ is a submatrix of the discrete Fourier transform (DFT). Let ሾ࢓ෝ , ࢀෝሿࣁ ൌ  ሽ beࢌሼࢸ
any unbiased estimator of the model parameters. The CRLB is a lower bound on the covari-
ance of ࢸሼࢌሽ; or, an upper bound on its SNR since ࢸሼࢌሽ is here unbiased. For brevity, we 
limit our discussion to cases where ૚0=ࡳࢀ and ࡳࢀࡳ ൌ ૙, which includes most contempo-
rary MRE protocols.  Within this regime, it can be shown that the harmonic CRLB is:  

Since ࣁෝ is a phase-based statistic, it is not surprising that the minimum achievable covari-
ance increases as raw signal SNR (SNRሺࢌሻ ൌ  ࡳ ሺ࣌√૛ሻ) decreases. The dependence on/|࢓|
in (1) reveals how an MEG setup impacts the limit of harmonic estimation performance. 
Comparing the minimum feasible covariance of ࣁෝ for different acquisition protocols is also 
straightforward given (1). Since maximum likelihood estimators (MLE) asymptotically 
achieve the CRLB [10], we next consider the complex harmonic MLE as defined in [11]:  

After reducing the dimensionality of (2) via variable projection (VARPRO), such that it 
explicitly depends only on ࣁ, it can be shown that the Hessian matrix of the cost functional, ࡴ, satisfies ࢘࢑࢔ࢇሺࡴሻ ൑ ,ࡰሺ૛࢔࢏࢓ ࡺ െ ૚ሻ. Since (2) contains ૛ࡰ real-valued unknowns 
after reduction, note that a (locally) unique harmonic estimate may not exist if ࢘࢑࢔ࢇሺࡴሻ ൏ ૛ࡰ.  Therefore, ࡺ ൒ ૛ࡰ ൅ ૚ is required for (local) harmonic uniqueness to 
be feasible. Thus, for ࡰ ൌ ૚, ࡺ ൒ ૜ MRE measurements should be acquired; and for ࡰ ൌ ૜, ࡺ ൒ ૠ measurements should be acquired. Note that these sample numbers 
are below what is commonly used in MRE, suggesting rationalized opportunity for reducing MRE acquisition time (SNR permitting). To validate the accuracy of (1), a 
homogenous stiffness phantom was imaged twice at 1.5 T using a 2D GRE sequence with 1=ࡰ, NEX=4, and 24= ࡺ equispaced phase offsets over one driving motion 
cycle (60 Hz). One series was used to construct a baseline harmonic and magnitude reference, while the other was subsampled to simulate various NEX≤4 and 24≥ࡺ 
acquisitions. For each setup, a harmonic estimate was generated via MLE (2) and its sample variance relative to baseline was recorded. The theoretical harmonic CRLB 
was then computed for the acquisition parameters.  
Results: Fig. 1 shows the empirically measured, simulated, and theoretically predicted variance results from the phantom experiment. Lower estimator variance is de-
sirable. That the empirical variance and CRLB estimates closely match across all NEX and phase offset pairs highlights the CRLB’s accuracy at predicting experimental 
MRE performance.  Also note that variance estimates hold down to ࡺ ൌ ૜, which coincides with the minimum sampling requirement for monodirectional experiments. 
Discussion: The benefits of a theoretical MRE performance evaluation platform based around the raw MRI signal – rather than the motion-induced phase signal – are 
many-fold. In addition to providing a statistically accurate model of error propagation and harmonic estimation complexity, this framework potentiates the concrete and 
objective comparison of existing MRE acquisition protocols (e.g., tetrahedral vs. SLIM), and can serve as a guiding tool for protocol development. This framework also 
provides a foundation for rigorously investigating the impact of scan nonidealities such as intravoxel phase dispersion (IVPD) [12], T2

* effects, and concomitant fields 
on harmonic estimation performance. Additional possible extensions include generalization for multifrequency protocols, accelerated acquisitions, or regularized (i.e., 
biased) complex harmonic estimation [13].   
Conclusion: The CRLB identifies the fundamental performance (estimator covariance) limits of any unbiased complex harmonic estimator, and provides an accurate 
and objective metric for comparing the performance potential of different steady-state MRE acquisition protocols or guiding the development of new ones. This bound, 
in turn, elucidates the minimum number of time samples needed to theoretically guarantee that the MRE harmonic estimation is fundamentally well-posed.   
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ෝሻࣁሺ܄۽۱ ൒ ૝࣌૛ |࢓|૛ ሺࡳכࡳሻି૚ = 
૛ ୗ୒ୖ૛ሺࢌሻ ሺࡳכࡳሻି૚ (1) 

ሾ࢓ෝ , ෝ ሿࣁ ൌ arg min௠,ఎ ෍|࢓ exp{jࢋࡾሼࢾ௡ࣁࡳࢀሽሽ െ ሺ݊ሻ|ଶ௡ࢌ  (2)  
Fig. 1) Experimental harmonic estimator variance and CRLB 
predictions for various phase offset and NEX combinations. 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    2518.


