# Proton-Constrained CMRO<sub>2</sub> Quantification with Direct <sup>17</sup>O-MRI at 3 Tesla

Dmitry Kurzhunov<sup>1</sup>, Robert Borowiak<sup>1,2</sup>, Philipp Wagner<sup>1</sup>, Marco Reisert<sup>1</sup>, and Michael Bock<sup>1</sup>
Department of Radiology · Medical Physics, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany, <sup>2</sup>German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany

#### Introduction

Abnormalities in brain metabolism are found in various diseases: tumors, cerebrovascular diseases and neurodegenerative diseases, such as Parkinson's, Alzheimer's and Huntington's. A useful biomarker of the metabolic brain activity is the cerebral metabolic rate of oxygen consumption (CMRO<sub>2</sub>) [1] which can be quantified with <sup>15</sup>O positron emission tomography (PET) [2], and direct or indirect <sup>17</sup>O MRI methods. In direct <sup>17</sup>O MRI the signal change of <sup>17</sup>O nucleus is detected during and after the administration of a <sup>17</sup>O-enriched gas. To overcome the low SNR, <sup>17</sup>O-MRI has so far only been applied at ultra-high fields ( $B_0 \ge 7T$ ) [3,4,5]. To make CMRO<sub>2</sub> quantification available at clinical field strengths ( $B_0 \le 3T$ ), where the SNR is smaller [6], prior information from co-registered <sup>1</sup>H MRI can be used in combination with iterative constrained image reconstruction. So far, only the object shape using a binary mask (BM) has been used for constrained reconstruction; however, this mask cannot distinguish different brain tissues. In this work we use an anisotropic non-homogeneous diffusion operator [7] on <sup>1</sup>H MRPAGE data as a constraint to improve the image quality of <sup>17</sup>O images and the localized CMRO<sub>2</sub> quantification in a frontal lobe.

## **Materials and Methods**

For the constrained reconstruction, a dynamic in vivo <sup>17</sup>O measurement consisting of 45 3D data sets of the brain was used. The data was acquired with a temporal resolution of 1 min and was obtained in a four phase CMRO<sub>2</sub> inhalation experiment in a healthy volunteer (male, age 49y) at a clinical 3 Tesla MR system (Tim Trio, Siemens). Using a custom-built TxRx <sup>17</sup>O head coil [8], a density-adapted projection sequence (DAPR) [9] and a re-breathing system, the <sup>17</sup>O 3D data sets were acquired during a baseline phase under free breathing (10 min), an <sup>17</sup>O inhalation phase (5 min), a re-breathing phase with a closed breathing circuit (8 min), and a final wash-out phase (22 min), during which the volunteer was breathing room air. In total, 2.5 L of 70% enriched <sup>17</sup>O gas (NUKEM Isotopes) was delivered. The following imaging parameters were used: nominal resolution:  $(10 \text{ mm})^3$ , TE = 0.52 ms, TR = 8 ms, BW = 150 Hz/px, T<sub>RO</sub> = 6.7 ms, 7500 projections x 128 radial points interpolated to a 1283 matrix.

<sup>1</sup>H 3D MPRAGE data (resolution: 0.6x0.6x1 mm<sup>3</sup>, TI = 1100 ms) were used for co-registration, tissue segmentation, and iterative reconstruction. In addition, after co-registration a numerical <sup>17</sup>O brain phantom was constructed from the segmented WM, GM and CSF compartments of the MPRAGE data with the acquisition parameters of the  $^{17}$ O-MRI measurement. A  $T_2^*$ -decay (2 ms) and Gaussian noise were applied using a measured SNR of 20. To simulate the dynamic <sup>17</sup>O MRI experiment, the intensities of the WM and GM were modulated with concentration-time curves of a 4-phase kinetic model [4] and literature CMRO<sub>2</sub> values [2].

Both phantom and experimental <sup>17</sup>O images were reconstructed with Kaiser-Bessel (KB) gridding method with and without Hanning filter. Alternatively, an iterative reconstruction was applied by minimizing the objective function

$$J(\boldsymbol{\rho}) = \|\mathbf{A} \cdot \boldsymbol{\rho} - \boldsymbol{y}\|^2 - \lambda_D \int \boldsymbol{\rho} \nabla (\mathbf{D} \nabla \boldsymbol{\rho}) \text{ with } \boldsymbol{D} = \left(\mathbf{1} - \frac{g \cdot g^T}{|g|^2} / \sqrt{1 + \frac{g^2}{\alpha^2}}\right)$$
(1),

where **A** denotes the system matrix that maps the image  $\rho$  to the corresponding raw data y. In the regularization term the gradient operator g is applied to the <sup>1</sup>H MRPAGE image ( $g = \nabla Im_{1H}$ ). The factors  $\lambda_D$  and a were chosen providing the best correspondence with PET CMRO<sub>2</sub> values [2] without image distortions:  $a = 2 \cdot 10^{-03} \overline{Im_{1H}}$ ,  $\lambda_D = 30 / 4000$  for phantom / in vivo. CMRO<sub>2</sub> values in the frontal lobe were determined by a fit with the 4-phase kinetic model.

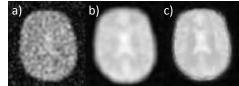



Fig. 1: Transverse slice of the simulated phantom reconstructed with Kaiser-Bessel (KB) gridding method without (a) and with Hanning window (b) and with  ${}^{1}H$  constraint (c). TA = 10 min.

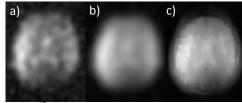



Fig. 2: <sup>17</sup>O MR images reconstructed with KB gridding without (a) and with Hanning window and with proton constraint(c). TA = 10 min

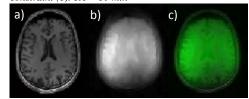



Fig. 3: Comparison of <sup>1</sup>H MPRAGE (a), co-registered  $^{17}O$  MRI image with proton constrained with TA = 10min (b and green in c) and fusion of both images (c).

### **Results and Discussion**

Proton-constrained <sup>17</sup>O images show better quality compared to KB regridding (Fig.1-2), since they contain more visible anatomical information (cf. the ventricles). The brain phantom simulations show that decent precision of CMRO<sub>2</sub> values in 1 ml of GM cannot be obtain without filtering. <sup>1</sup>H-constrained reconstruction gives most precise values in phantom simulations and localized in vivo CMRO<sub>2</sub> quantification in GM and WM in a frontal lobe (Fig. 4). For GM the value is in a good agreement with literature PET values [2] and has a factor of 1.8-2.8 smaller uncertainty compared to KB gridding. For WM CMRO2 value is underestimated, since it is affected by partial volume effects (PVE) with other brain tissues. To increase the resolution of the low-SNR <sup>17</sup>O MRI data at 3T, in brain tumor studies <sup>1</sup>H-constrained iterative reconstruction is an interesting alternative to conventional post-processing methods such as filtering, which might also help to overcome limitations due to PVEs.

[1] Miles KA et al. (2008) Cancer Imaging 8:81-86 [2] Leenders KL et al. (1990) Brain 113:27-47 [3] Atkinson et al. (2010). Neuro-Image 23:63-74 [4] Hoffmann SH et al. (2011) MRM 66:1109-1115 [5] Hoffmann SH et al. (2014) MAGMA [6] Borowiak R et al. MAGMA (2014) 27: 95-99 [7] Perona P and Malik J (1990) IEEE Trans. Pattern Anal. Mach. Intell 12:629:39[8] Borowiak R et al.

|  |        | CMRO <sub>2</sub> [µmol/g <sub>tissue</sub> ·min] |           |                            |                             |           |                            |           |
|--|--------|---------------------------------------------------|-----------|----------------------------|-----------------------------|-----------|----------------------------|-----------|
|  | Tissue | Simulated brain phantom                           |           |                            | In vivo <sup>17</sup> O MRI |           |                            | 15O-PET   |
|  |        | no Hann                                           | with Hann | <sup>1</sup> H constrained | no Hann                     | with Hann | <sup>1</sup> H constrained | <b>5</b>  |
|  | GM     | 1.65±0.63                                         | 1,01±0.15 | 1.12±0.15                  | 1.55±0.34                   | 1.68±0.21 | 1.56±0.12                  | 1.59±0.23 |
|  | WM     | 0.75±0.23                                         | 0.80±0.18 | 0.70±0.14                  | *                           | 1.16±0.39 | 1.12±0.18                  | 0.62±0.10 |

Fig. 4: CMRO<sub>2</sub> values obtained in the simulated phantom (in 1 ml GM and WM) and with direct <sup>17</sup>O-MRI at 3 Tesla (in 2 ml GM and 4 ml WM) compared with PET literature values from [2]. was not defined due to low SNR

ISMRM (2014) [9] Nagel AM et al. (2011) MRM 62:1565-73

Financial support from NUKEM Isotopes is gratefully acknowledged.