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Introduction: Low-rank modeling of local k-space neighborhoods (LORAKS) is a recent constrained MRI framework that can enable accurate image 
reconstruction from sparsely- and unconventionally-sampled k-space data [1,2].  Specifically, Ref. [1] showed that the k-space data for MR images that 
have limited spatial support or slowly-varying image phase can be mapped into structured low-rank matrices, and that low-rank matrix regularization 
techniques can be applied to these matrices to yield high-quality reconstructions.  This approach enabled novel k-space trajectories that are difficult to 
reconstruct using any other method, including calibrationless randomly undersampled half k-space trajectories.  In addition, LORAKS is easily extended 
to incorporate parallel imaging constraints [2], and can also be easily combined with other regularization-based reconstruction penalties.  Despite these 
advantages, previous LORAKS-based reconstructions have been relatively slow to compute because they depend on slow low-rank matrix recovery 
algorithms that repeatedly compute singular value decompositions (SVDs) of relatively large matrices [1,2].  In this work, we demonstrate that much 
faster linear least-squares reconstruction algorithms can be used if a fully-sampled autocalibration region of k-space has been acquired.  We call this 
new approach autocalibrated LORAKS (AC-LORAKS). 

Theory and Methods: Previous single-channel LORAKS work [1] showed that: (i) if an MR image has limited spatial support, then it is possible to 
form the fully-sampled k-space data into a structured low-rank matrix denoted by ۱; (ii) if an MR image has slowly-varying spatial image phase, then it is 
possible to form the fully-sampled  k-space data into a different structured low-rank matrix denoted by ܁; (iii) if an MR image has slowly-varying spatial 
image phase, then it is possible to form the fully-sampled k-space into yet another rank-deficient structured matrix denoted by ۵.  In parallel imaging 
scenarios, the LORAKS matrices constructed from each individual channel can be combined into big matrices with even better low-rank characteristics 
[2].  In previous LORAKS work [1,2], the fully sampled data was estimated from undersampled k-space by simultaneously enforcing data consistency 
and the low-rank structure of these matrices.  Enforcing the low-rank matrix structure required computationally demanding iterative algorithms. 

In this work, we notice that if there exists a suitably large fully-sampled region of k-space data, then the ۱, ܁,	and ۵ matrices constructed from zero-filled 
k-space data will each have a number of fully-sampled rows.  Similar to previous work [3,4], we observe that the existence of fully-sampled rows implies 
that it is possible to estimate the nullspaces of ۱, ܁,	and ۵ by applying an SVD to the submatrices formed from these rows.  If the nullspace of a low-rank 
matrix is known in advance, then it is possible to estimate missing k-space data by imposing the fact that missing data must be consistent with the 
nullspace constraints [3,4].  This can be achieved by solving simple linear least-squares problems, instead of resorting to computationally-intensive 
matrix recovery algorithms.   Specifically, let ۱௦ denote the ۱ matrix constructed from zero-filled measured data, and let ۱௨ denote the ۱ matrix 
constructed from zero-filled unsampled data.  While the ۱௦ can be constructed based on the measured data, the ۱௨ matrix is unknown and needs to be 
estimated.  However, if the rows of matrix ܈ form a basis for the nullspace of ۱, then we know that ۱܈ ൌ ሺ۱௦ ൅ ۱௨ሻ܈ ൎ ૙, or that the unsampled data 
points obey the relationship ۱௨܈ ൎ െ۱௦܈.  This is a simple linear system of equations that can be solved using standard linear least-squares methods for 
the values of the unmeasured samples contained in ۱௨.  Constructing ܈  and solving this problem is the general AC-LORAKS procedure for the ۱ matrix.  
Similar AC-LORAKS procedures apply for the ܁	and ۵ matrices. 

Results: Fig. 1 shows the results of AC-LORAKS applied to single-channel MRI data that was retrospectively undersampled, keeping 5/8ths of the 
fully-sampled k-space data.  The acquisition was designed using a quasi half k-space random sampling scheme, which yields higher k-space sampling 
density in one half of k-space.  Higher sampling density leads to improved reconstruction characteristics, and the half of k-space that was sampled with 
lower density can be recovered using ܁- and ۵-based phase constraints.  Note that this kind of sampling scheme can be difficult to reconstruct using 
other methods.   The AC-LORAKS reconstruction took ~6.5 minutes to compute (all computations used unoptimized  MATLAB code).  For comparison, 
conventional LORAKS-based iterative matrix-recovery algorithms took roughly 12 minutes (41 iterations) to converge when initialized with the AC-
LORAKS result, and roughly 17 minutes (59 iterations) to converge when initialized using a zero-filled result (as used in previous work [1,2]).  Clearly, 
AC-LORAKS leads to substantial improvements in reconstruction speed.  Fig. 2 shows the results of AC-LORAKS applied to 32-channel MRI data that 
was retrospectively undersampled with 6× acceleration.  As before, a quasi half k-space random sampling scheme was used.  Compared to SPIRiT 
reconstruction [5], the AC-LORAKS reconstruction has a clear advantage in reconstruction quality. 
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Fig. 1. Single-channel AC-LORAKS versus traditional LORAKS. Fig. 2.  32-channel parallel imaging results with 6× acceleration. 

Conclusions: This work proposed a fast algorithm for LORAKS-based reconstruction.  The approach can be applied whenever a sufficiently large 
autocalibration region is present within the measured data.  The results of AC-LORAKS can be used to replace or initialize the results of previous 
LORAKS-based reconstruction methods.  Alternatively, AC-LORAKS can be used to obtain better results than those obtained with previous 
autocalibrated parallel imaging methods like PRUNO [4], SPIRiT [5], or GRAPPA [6].  AC-LORAKS is also easily augmented with other forms of 
regularization. 
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