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Introduction: Low-rank modeling of local k-space neighborhoods (LORAKS) is a recent constrained MRI framework that can enable accurate image
reconstruction from sparsely- and unconventionally-sampled k-space data [1,2]. Specifically, Ref. [1] showed that the k-space data for MR images that
have limited spatial support or slowly-varying image phase can be mapped into structured low-rank matrices, and that low-rank matrix regularization
technigues can be applied to these matrices to yield high-quality reconstructions. This approach enabled novel k-space trajectories that are difficult to
reconstruct using any other method, including calibrationless randomly undersampled half k-space trajectories. In addition, LORAKS is easily extended
to incorporate parallel imaging constraints [2], and can also be easily combined with other regularization-based reconstruction penalties. Despite these
advantages, previous LORAKS-based reconstructions have been relatively slow to compute because they depend on slow low-rank matrix recovery
algorithms that repeatedly compute singular value decompositions (SVDs) of relatively large matrices [1,2]. In this work, we demonstrate that much
faster linear least-squares reconstruction algorithms can be used if a fully-sampled autocalibration region of k-space has been acquired. We call this
new approach autocalibrated LORAKS (AC-LORAKS).

Theory and Methods: Previous single-channel LORAKS work [1] showed that: (i) if an MR image has limited spatial support, then it is possible to
form the fully-sampled k-space data into a structured low-rank matrix denoted by C; (ii) if an MR image has slowly-varying spatial image phase, then it is
possible to form the fully-sampled k-space data into a different structured low-rank matrix denoted by S; (iii) if an MR image has slowly-varying spatial
image phase, then it is possible to form the fully-sampled k-space into yet another rank-deficient structured matrix denoted by G. In parallel imaging
scenarios, the LORAKS matrices constructed from each individual channel can be combined into big matrices with even better low-rank characteristics
[2]. In previous LORAKS work [1,2], the fully sampled data was estimated from undersampled k-space by simultaneously enforcing data consistency
and the low-rank structure of these matrices. Enforcing the low-rank matrix structure required computationally demanding iterative algorithms.

In this work, we notice that if there exists a suitably large fully-sampled region of k-space data, then the C, S, and G matrices constructed from zero-filled
k-space data will each have a number of fully-sampled rows. Similar to previous work [3,4], we observe that the existence of fully-sampled rows implies
that it is possible to estimate the nullspaces of C, S, and G by applying an SVD to the submatrices formed from these rows. If the nullspace of a low-rank
matrix is known in advance, then it is possible to estimate missing k-space data by imposing the fact that missing data must be consistent with the
nullspace constraints [3,4]. This can be achieved by solving simple linear least-squares problems, instead of resorting to computationally-intensive
matrix recovery algorithms.  Specifically, let C, denote the C matrix constructed from zero-filled measured data, and let C, denote the C matrix
constructed from zero-filled unsampled data. While the C; can be constructed based on the measured data, the C, matrix is unknown and needs to be
estimated. However, if the rows of matrix Z form a basis for the nullspace of C, then we know that CZ = (C; + C,)Z = 0, or that the unsampled data
points obey the relationship C,Z ~ —C,Z. This is a simple linear system of equations that can be solved using standard linear least-squares methods for
the values of the unmeasured samples contained in C,. Constructing Z and solving this problem is the general AC-LORAKS procedure for the C matrix.
Similar AC-LORAKS procedures apply for the S and G matrices.

Results: Fig. 1 shows the results of AC-LORAKS applied to single-channel MRI data that was retrospectively undersampled, keeping 5/8ths of the
fully-sampled k-space data. The acquisition was designed using a quasi half k-space random sampling scheme, which yields higher k-space sampling
density in one half of k-space. Higher sampling density leads to improved reconstruction characteristics, and the half of k-space that was sampled with
lower density can be recovered using S- and G-based phase constraints. Note that this kind of sampling scheme can be difficult to reconstruct using
other methods. The AC-LORAKS reconstruction took ~6.5 minutes to compute (all computations used unoptimized MATLAB code). For comparison,
conventional LORAKS-based iterative matrix-recovery algorithms took roughly 12 minutes (41 iterations) to converge when initialized with the AC-
LORAKS result, and roughly 17 minutes (59 iterations) to converge when initialized using a zero-filled result (as used in previous work [1,2]). Clearly,
AC-LORAKS leads to substantial improvements in reconstruction speed. Fig. 2 shows the results of AC-LORAKS applied to 32-channel MRI data that
was retrospectively undersampled with 6x acceleration. As before, a quasi half k-space random sampling scheme was used. Compared to SPIRIT
reconstruction [5], the AC-LORAKS reconstruction has a clear advantage in reconstruction quality.
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Fig. 1. Single-channel AC-LORAKS versus traditional LORAKS. Fig. 2. 32-channel parallel imaging results with 6x acceleration.
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Conclusions: This work proposed a fast algorithm for LORAKS-based reconstruction. The approach can be applied whenever a sufficiently large
autocalibration region is present within the measured data. The results of AC-LORAKS can be used to replace or initialize the results of previous
LORAKS-based reconstruction methods. Alternatively, AC-LORAKS can be used to obtain better results than those obtained with previous
autocalibrated parallel imaging methods like PRUNO [4], SPIRIT [5], or GRAPPA [6]. AC-LORAKS is also easily augmented with other forms of
regularization.
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