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Purpose: Coil compression'”

different coil geometries.

Methods: The edge of k-space usually contains limited signal and is dominated by noise. This algorithm is based on
estimating the proportion of k-space variance that is due to these noisy outer k-space regions. A Fourier Transform is
taken in the readout dimension to convert k-space data into hybrid space, where each readout location (x) is
considered a “slice”. The center 20 slices are considered when determining the number of virtual coils. For corner-

3 methods combine parallel MRI data from large coil arrays into few virtual coils, and
therefore significantly speed up the reconstruction. Coil compression is usually achieved by singular value
decomposition, where the number of virtual coils can be determined by thresholding the singular values. However,
the thresholds have to be manually tuned for different datasets or coil geometries. Here, a new approach based on
noise variance estimation is proposed to automatically select the number of virtual coils. The noise variance is used
to determine the virtual coils in which signals are mostly noise and can therefore be disposed of. We apply the
proposed method with Geometric-decomposition Coil Compression (GCC)' and validate it on various datasets from

cut sampling patterns, a region very close to the edge of the oval in the k-k, plane is used as the noisy region (Fig.1).
Otherwise, a one-pixel edge of k-space is used instead. For each slice, two sets of vectors are formed: v; contains all

sampled data points in the noisy region for the i™ coil and u; contains all sampled points in the
slice. Then, the noise proportion for slice r (o;-) is calculated as the sum of the variances in v;
divided by the sum of the variances in u;, i.e. o, = w
I, var ()
to retain 1 — o, of the total k-space variance. For each slice, the sampled multi-coil data points
are reformatted into a matrix and singular value decomposition is performed on this matrix.'”
The singular values are then squared and normalized so that each entry represents the
proportion of k-space variance explained by the corresponding singular vectors. Next, the
squared and normalized singular values are added up until surpassing the threshold value
1 — o, found above. For slice r, the number of singular values required to achieve this is the
recommended number of virtual coils. The maximum of these counts across all considered
slices is set to be the ideal number of virtual coils.
Results: The algorithm was tested on a 2D dataset (for
which Single Coil Compression (SCC) was performed on
the only available slice) and on two 3D datasets, presenting .||
different coil geometries. Each dataset was tested on fully  e=f|
sampled, under-sampled by a factor of two in y and z £ .|
separately and then under-sampled by a factor of two in  ** \ j
both dimensions. 20 auto-calibration lines were kept in all ~ ea \K_
cases. Table 1 shows automatically determined number of 8
virtual coils for each case. The results are consistent for ..
different acceleration factors and suggest levels of — °=[}|
compression that closely match the kinks in the gewf|
corresponding nRMSE plots (Fig. 2) and the numbers of =7
coils found empirically. Figure 2 shows a compressed slice e Q
for each of the datasets, the slice constructed using all coils, —_—
and the absolute error (x20). The image quality is very
similar before and after coil compression, but the
reconstruction time is significantly shorter (e.g. 260s vs.  ** \
1620s for body 3D). Furthermore, the coil compression %,, \\
algorithm runtime is much shorter than the full "o /
reconstruction time (less than 2.5% of full runtime for body .. \ﬁ
3D). Therefore, time considerations for the algorithm can be . B ——
neglected.

Discussion: The proposed method effectively determines a
compression level that is appropriate for each dataset
considered. Masking out a noisy region can be generally
applied to all sampling patterns and acceleration factors. At

For coil compression, we aim
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Fig. 1: Getting the noisy region
when corner-cut sampling was

performed.

Data set n recommended coils
R,=R,=1| R,=2, R,=1, | R,=R,=2
R,=1 R,=2

Brain 2D 4 4 4 5
160x220x8

Body 3D 6 6 6 7

192x224x92x32
Brain 3D 6 6 7 7

100x100x70x32

Table 1: Recommended numbers of virtual coils (no under-sampling,
under-sampling in y, under-sampling in z, under-sampling in both).

Fig. 2: From left to right: a) nRMSE plot for sum of squares images using different numbers of
retained coils, b) slice using all coils, ¢) slice using recommended number of coils, d) difference
image times 20. Top to bottom: Body 3D (192x224x92x32), Brain 3D (100x100x70x32), Brain 2D

the same time, if a pre-scan noise acquisition is available, the noise variance can be estimated directly and then be used for the proposed algorithm.
Conclusion: An automatic coil compression method has been proposed and validated on the different datasets. The proposed noise variance metric is

robust for different sampling patterns and acceleration factors.
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