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Purpose: Coil compression1-3 methods combine parallel MRI data from large coil arrays into few virtual coils, and 
therefore significantly speed up the reconstruction. Coil compression is usually achieved by singular value 
decomposition, where the number of virtual coils can be determined by thresholding the singular values. However, 
the thresholds have to be manually tuned for different datasets or coil geometries. Here, a new approach based on 
noise variance estimation is proposed to automatically select the number of virtual coils. The noise variance is used 
to determine the virtual coils in which signals are mostly noise and can therefore be disposed of. We apply the 
proposed method with Geometric-decomposition Coil Compression (GCC)1 and validate it on various datasets from 
different coil geometries. 
Methods: The edge of k-space usually contains limited signal and is dominated by noise. This algorithm is based on 
estimating the proportion of k-space variance that is due to these noisy outer k-space regions. A Fourier Transform is 
taken in the readout dimension to convert k-space data into hybrid space, where each readout location (x) is 
considered a “slice”. The center 20 slices are considered when determining the number of virtual coils. For corner-
cut sampling patterns, a region very close to the edge of the oval in the ky-kz plane is used as the noisy region (Fig.1). 
Otherwise, a one-pixel edge of k-space is used instead. For each slice, two sets of vectors are formed: vi contains all 
sampled data points in the noisy region for the ith coil and ui contains all sampled points in the 
slice. Then, the noise proportion for slice r (ߪ௥) is calculated as the sum of the variances in vi 

divided by the sum of the variances in ui, i.e. ߪ௥ = ∑ ௏௔௥(௩೔)೙೔సభ∑ ௏௔௥(௨೔)೙೔సభ . For coil compression, we aim 

to retain 1 −  ௥ of the total k-space variance. For each slice, the sampled multi-coil data pointsߪ
are reformatted into a matrix and singular value decomposition is performed on this matrix.1-2 
The singular values are then squared and normalized so that each entry represents the 
proportion of k-space variance explained by the corresponding singular vectors. Next, the 
squared and normalized singular values are added up until surpassing the threshold value 1 −  ௥ found above. For slice r, the number of singular values required to achieve this is theߪ
recommended number of virtual coils. The maximum of these counts across all considered 
slices is set to be the ideal number of virtual coils. 
Results: The algorithm was tested on a 2D dataset (for 
which Single Coil Compression (SCC) was performed on 
the only available slice) and on two 3D datasets, presenting 
different coil geometries. Each dataset was tested on fully 
sampled, under-sampled by a factor of two in y and z 
separately and then under-sampled by a factor of two in 
both dimensions. 20 auto-calibration lines were kept in all 
cases. Table 1 shows automatically determined number of 
virtual coils for each case. The results are consistent for 
different acceleration factors and suggest levels of 
compression that closely match the kinks in the 
corresponding nRMSE plots (Fig. 2) and the numbers of 
coils found empirically. Figure 2 shows a compressed slice 
for each of the datasets, the slice constructed using all coils, 
and the absolute error (x20). The image quality is very 
similar before and after coil compression, but the 
reconstruction time is significantly shorter (e.g. 260s vs. 
1620s for body 3D). Furthermore, the coil compression 
algorithm runtime is much shorter than the full 
reconstruction time (less than 2.5% of full runtime for body 
3D). Therefore, time considerations for the algorithm can be 
neglected. 
Discussion: The proposed method effectively determines a 
compression level that is appropriate for each dataset 
considered. Masking out a noisy region can be generally 
applied to all sampling patterns and acceleration factors. At 
the same time, if a pre-scan noise acquisition is available, the noise variance can be estimated directly and then be used for the proposed algorithm. 
Conclusion: An automatic coil compression method has been proposed and validated on the different datasets. The proposed noise variance metric is 
robust for different sampling patterns and acceleration factors.  
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