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TARGET AUDIENCE: Physicists 

OBJECTIVES: A tracer-kinetic field theory has been proposed for DCE- 
and DSC-MRI that models the spatial transport of indicator, potentially 
reducing systematic errors and providing new physiological information 
[1,2]. However, it is currently unclear whether all model parameters 
are identifiable without additional constraints. Here this question is 
investigated in 2D for the simplest field model describing a single 
compartment with diffusion and convection.  

THEORY: A one-compartment field model is defined by a divergence-
free flow field f(r) (ml/min/cm2), a diffusivity D(r) (cm2/min), and a 
volume fraction v(r). After suitable space discretisation (fig 1) this 
reduces to a multi-compartment model where each voxel is a 
compartment and neighbouring voxels (i,j) exchange indicator with 
non-negative transfer constants Kij and Kji [2]. Given a measurement of 
(Kij, Kji) on a surface normal to the x-axis, the diffusivity Dij and the x-
component uij of the velocity u = f/v at the surface can be derived as uij 
= (Kij-Kji)*Δx and Dij = min(Kij, Kji) *Δx2.  

METHODS: A square field of view with side L=40cm was simulated with 
v(x,y)=0.7+0.2*sin(2π(3x+5y)/L), fy(x,y)=(y/L-1)*(x/L-1), fx(0,y)=0.5 and 
D(x,y)=exp(-((x/L-0.5)/0.4)2 - ((y/L-0.5)/0.2)2). A population-average 
input function was injected at (x,y)=(0,0) for 60s. The space was 
discretised with 2cm voxels, and the time step Δt was equal to the 
smallest voxel mean transit time of 0.48s.  

The forward problem (fig 1) was solved by iterating the matrix equation 
C(t+Δt) = C(t) + ΔtKC(t) + ΔtKaCa(t), where C(t) is a vector with all 
concentrations, Ca(t) is a vector of input functions, Ka depends on the Kij 
entering the slice, K depends on all other Kij. The inverse problem was 
solved by rewriting this equation as C(t+Δt) - C(t) = C*(t)K, where C(t) is 
a vector of inner concentrations only, K is a vector of Kij into- or out of 
inner voxels, and C*(t) depends on all concentrations. This defines a 
linear system B(t) = A(t)K for each t, which can summarised into one 
sparse system B=AK. The system is solved iteratively for K with a 
gradient descent method and initial K=0. At each iteration, the solution 
is projected onto the constraints Kij > 0 and ΣjKij < 1/Δt. 

RESULTS: Figure 2 shows the solution of the forward problem at time steps of 5s (Δt was 0.48s). The bolus enters in the lower left 
corner and leaves at the upper right, dispersing in the process. The sinusoidal imprint of v(r) is clearly seen. Very little indicator 
reaches the bottom right or top left corner within the 60s acquisition. Figure 3 shows the reconstruction for the three scalar fields in 
comparison to the exact field. The fields are undetermined in areas where no indicator enters, leading to values of zero in those 
regions. In other regions the basic structure of the original fields can be observed, but the reconstruction is generally inaccurate.   

CONCLUSION: In a simulation without data error (noise, undersampling, artefacts) or model error (tracer-kinetic model, signal 
model), one would expect a very good reconstruction in well-perfused areas. This is not the case, suggesting that multiple solutions 
exist and/or the algorithm has not converged. Therefore an improved algorithm is required to identify the global optimum, or 
additional constraints must be imposed to reduce the size of the solution space. 
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