
Fig.1. Standard diffusion outputs (T2, ADC, FA), selected kurtosis 
outputs, and NODDI outputs (intra-cellular volume fraction or 
neurite density, orientation dispersion index, and isotropic) from 
CS-DSI of a patient with low grade astrocytoma . 
 

Fig.2. Diffusion values for tumor tissue (red *), normal contralateral tissue (black ), 
edema (blue °), and CSF (green +), normalized to the population mean for tumor tissue. 
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Purpose: Compressed sensing (CS) can be applied to accelerate acquisition 
of diffusion spectrum imaging (DSI) in 15-minutes at 3T with standard 
receiver arrays [1], which may enable routine, multi-directional fiber-tracking 
in surgical planning for brain tumors. In addition, the intrinsic multi-b-value 
sampling of CS-DSI may provide further characterization of the 
microstructure of brain tumors [2]. In this work, we report on preliminary 
results applying both kurtosis [3,4] and neurite orientation dispersion and 
density imaging (NODDI) [5,6] for brain tumor characterization and 
visualization.  
 

Methods: Fifteen patients with intracranial tumors (mean age 47.4, sd 21.9, 
10M/5F) were recruited for imaging at 3T MRI (GE, MR750) using a 
standard 8-channel brain coil. A 15-minute CS-DSI acquisition was added to a 
brain tumor protocol, using a single-shot EPI acquisition (FOV=22-24 cm, 
128×128 matrix, thickness=3 mm, TR=4-5 s, TE=107-116 ms). CS 
acceleration factors of R=4 (b=10,000 s/mm2, 127 diffusion directions, 9 
subjects) and R=5 (b=6,000 s/mm2, 102 diffusion directions, 6 subjects) were 
applied, trading off q-space fidelity for slice coverage.  The data were fitted 
for kurtosis [4] (limited to b<3000 s/mm2) and NODDI [6] without CS 
reconstruction. 
 

The maps selected for analysis included the T2 (b=0) image, standard metrics 
of ADC and FA, selected kurtosis metrics (maximum apparent kurtosis 
coefficient, orthogonal and parallel kurtosis), and NODDI metrics (ICVF, 
orientation dispersion index, and isotropic).Tumor regions were identified on 
ADC maps and semi-automatically segmented using the ICVF maps [7]. 
Edema was distinguished from tumor in 4 subjects. Contralateral white matter 
regions of comparable volume as the tumor were selected on the FA maps. 
Lateral CSF regions were identified on the ADC and NODDI-isotropic maps. 
 
 

Results: In all subjects, the tumor regions were clearly visualized in the T2, ADC, K 
Max, K Orthogonal and ICVF maps. Fig. 1 shows the maps that were analyzed from 
one subject (#15). Quantitatively (Fig. 2), the ADC and the ISO maps were best at 
distinguishing tumor from CSF (P<0.0001), followed by the T2 maps (P=0.001). The percentage standard deviation (%sd) of ISO-CSF (4%) was 
three-fold smaller than that for ADC-CSF (13%). 3/4 of the edema labels appeared clustered, while 1/4 appeared to be CSF-like. The %sd of ISO-
tumor (79%) was much larger than that of ADC-tumor (32%). FA, K Max and K Orthogonal distinguished tumor from normal tissue (P<0.0001). In 
both tumor and normal tissue, the %sd of K Max and K Orthogonal were smaller than that of the respective standard maps (T2, ADC, FA). 
Interestingly, the %sd of all NODDI-tumor maps and NODDI-ODI and ISO maps of normal tissue were all larger than that of the standard maps.  
  

Discussion and Conclusion: The application of CS-
accelerated DSI was extended to microstructure 
characterization using kurtosis and NODDI models. 
Kurtosis maps and NODDI-ISO may provide additional 
information to improve tumor segmentation from normal 
tissue and CSF. The larger spread of NODDI values in 
tumors may provide added information for tumor 
classification. This preliminary work motivates further 
analysis of tumor sub-classes, and machine-learning 
methods to improve tumor segmentation and classification. 
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