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Purpose: Compressed sensing (CS) can be applied to accelerate acquisition
of diffusion spectrum imaging (DSI) in 15-minutes at 3T with standard
receiver arrays [1], which may enable routine, multi-directional fiber-tracking
in surgical planning for brain tumors. In addition, the intrinsic multi-b-value
sampling of CS-DSI may provide further characterization of the
microstructure of brain tumors [2]. In this work, we report on preliminary
results applying both kurtosis [3,4] and neurite orientation dispersion and
density imaging (NODDI) [5,6] for brain tumor characterization and
visualization.

Methods: Fifteen patients with intracranial tumors (mean age 47.4, sd 21.9,
10M/5F) were recruited for imaging at 3T MRI (GE, MR750) using a
standard 8-channel brain coil. A 15-minute CS-DSI acquisition was added to a
brain tumor protocol, using a single-shot EPI acquisition (FOV=22-24 cm,
128x128 matrix, thickness=3 mm, TR=4-5 s, TE=107-116 ms). CS
acceleration factors of R=4 (b=10,000 s/mmz, 127 diffusion directions, 9
subjects) and R=5 (b=6,000 s/mmz, 102 diffusion directions, 6 subjects) were
applied, trading off g-space fidelity for slice coverage. The data were fitted
for kurtosis [4] (limited to b<3000 s/mmz) and NODDI [6] without CS
reconstruction.

The maps selected for analysis included the T2 (b=0) image, standard metrics
of ADC and FA, selected kurtosis metrics (maximum apparent kurtosis
coefficient, orthogonal and parallel kurtosis), and NODDI metrics (ICVF,
orientation dispersion index, and isotropic).Tumor regions were identified on
ADC maps and semi-automatically segmented using the ICVF maps [7].
Edema was distinguished from tumor in 4 subjects. Contralateral white matter
regions of comparable volume as the tumor were selected on the FA maps.
Lateral CSF regions were identified on the ADC and NODDI-isotropic maps.

Results: In all subjects, the tumor regions were clearly visualized in the T2, ADC, K
Max, K Orthogonal and ICVF maps. Fig. 1 shows the maps that were analyzed from
one subject (#15). Quantitatively (Fig. 2), the ADC and the ISO maps were best at
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Fig.1. Standard diffusion outputs (T2, ADC, FA), selected kurtosis
outputs, and NODDI outputs (intra-cellular volume fraction or
neurite density, orientation dispersion index, and isotropic) from
CS-DSI of a patient with low grade astrocytoma .

distinguishing tumor from CSF (P<0.0001), followed by the T2 maps (P=0.001). The percentage standard deviation (%sd) of ISO-CSF (4%) was
three-fold smaller than that for ADC-CSF (13%). 3/4 of the edema labels appeared clustered, while 1/4 appeared to be CSF-like. The %sd of ISO-
tumor (79%) was much larger than that of ADC-tumor (32%). FA, K Max and K Orthogonal distinguished tumor from normal tissue (P<0.0001). In
both tumor and normal tissue, the %sd of K Max and K Orthogonal were smaller than that of the respective standard maps (T2, ADC, FA).
Interestingly, the %sd of all NODDI-tumor maps and NODDI-ODI and ISO maps of normal tissue were all larger than that of the standard maps.
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edema (blue °), and CSF (green +), normalized to the population mean for tumor tissue.
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