

Quantitative Brain Tumor Mapping Using Magnetic Resonance Fingerprinting

Chaitra Badve¹, Matthew Rogers², Alice Yu², Dan Ma³, Shivani Pahwa⁴, Andrew Sloan⁵, Jeffrey Sunshine^{1,4}, Vikas Gulani^{1,4}, and Mark Griswold^{3,4}

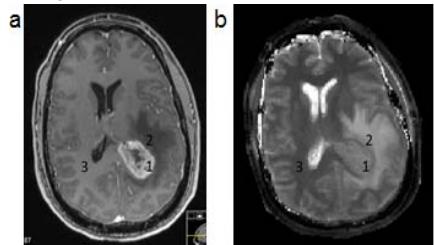
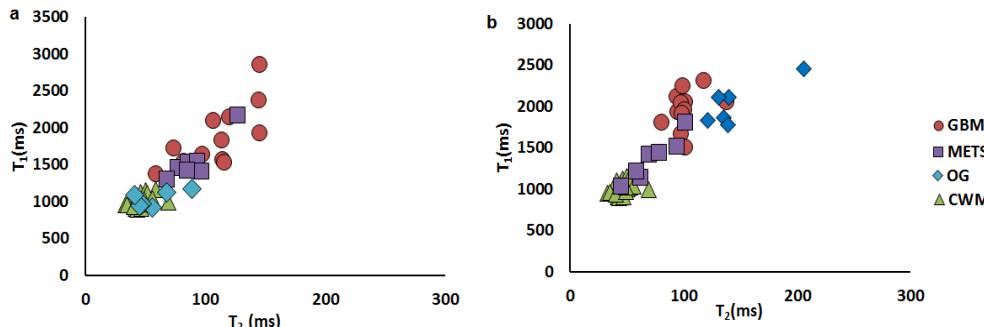
¹Radiology, University Hospitals, Cleveland, Ohio, United States, ²School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States, ³Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States, ⁴Radiology, Case Western Reserve University, Cleveland, Ohio, United States, ⁵Neurosurgery, University Hospitals, Cleveland, Ohio, United States

Target Audience: Audience interested in MR fingerprinting (MRF), brain tumors, and advanced neuroimaging.

Purpose: To evaluate quantitative relaxation parameters of different types of intra-axial brain tumors using MRF.

Methods: 21 patients with intra-axial brain tumors, including 10 glioblastoma multiforme (GBM), 5 oligodendrogiomas (OG) and 6 metastases (METS) were scanned using an MRF protocol¹ prior to contrast administration and before beginning any therapeutic interventions. Axial MRF data were acquired through representative areas of tumor region and quantitative T_1 and T_2 maps were generated. Guided by clinical imaging, T_1 and T_2 quantification of solid tumor component, immediate perilesional white matter (PWM) within 1 cm from enhancing margin, and contralateral white matter (CWM) was performed using ROI analysis as shown in figure 1. Student's t-test was used for statistical analysis.

Results: Relaxometry values (mean and standard deviation) for each tumor component are listed in table 1. The student's t-test, which was used to compare components, revealed significant differences between tumor elements, with significant findings highlighted in table 2.



Discussion: This study used MRF to produce relaxometry values which showed significant differences between various components of GBM, METS, and OGs. The results demonstrated that T_1 and T_2 values as observed with MRF are statistically different in both the solid tumor component and PWM of GBM versus METS. This work also showed a difference in the T_2 values of GBM and OG solid tumor regions. Finally, all tumor regions were shown to be quantitatively different than normal CWM for both T_1 and T_2 . All these findings can be summarized graphically as scatter plots, as shown in figure 2. These results demonstrate that MRF generated quantitative maps can be used to reliably distinguish tumor from surrounding normal tissue and to distinguish GBMs, METs, and OGs from one another. These results are driven by differences in the molecular and cellular environments between areas studied, and reflect the sensitivity of MRF to such changes in the presence of disease. This capability has significant clinical potential because a fast, accurate, non-invasive measurement of the tumor micro-environment could potentially provide diagnostic and prognostic information and enable optimization of patient care earlier and more objectively than is conventionally achieved.

Conclusion: MRF is able to simultaneously measure T_1 and T_2 values of brain tumors and surrounding tissues. It can objectively distinguish tumor types and PWM changes from CWM. The preliminary data on MRF of brain tumors suggest potential application of this technique to identify and diagnose intracranial masses, delineate tumor margins, define histologic subtypes, and characterize therapeutic response.

Acknowledgement: The authors would like to acknowledge funding from Siemens Healthcare and NIH grants NIH 1R01EB016728-01A1 and NIH 5R01EB017219-02

REFERENCES:

1. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. *Nature*. 2013; 495:187-193.

Figure 1 Representative locations of ROIs used in analysis. 1-Solid tumor region, 2-PWM within 1cm of enhancing margin and 3-CWM, shown in a) post contrast T_1 -weighted image and b) MRF T_1 map

Table 1. Average T_1 , T_2 values of all regions

	T_1 (ms)	T_2 (ms)
GBM Solid Tumor	1970 \pm 219	101 \pm 13
GBM PWM	1889 \pm 408	109 \pm 27
METS Solid Tumor	1369 \pm 243	72 \pm 19
METS PWM	1551 \pm 263	90 \pm 17
OG Solid Tumor	2024 \pm 232	145 \pm 28
OG PWM	1035 \pm 99	58 \pm 16
CWM	1008 \pm 65	46 \pm 8

Table 2. Results of statistical comparison of various tumor regions. Significant results in bold.

	T_1 P-Value	T_2 P-Value
GBM vs. METS Solid Tumor	1.7×10^{-4}	3.8×10^{-3}
GBM vs. METS PWM	0.027	0.045
GBM vs. OG Solid Tumor	0.34	7.6×10^{-3}
All Solid Tumor vs. CWM	2.7×10^{-11}	4.21×10^{-9}
METS/GBM PWM vs. CWM	4.5×10^{-8}	1.7×10^{-8}

Figure 2. Scatter plot of T_1 and T_2 values for various regions. a) T_1 vs T_2 chart for PWM regions and CWM. b) T_1 vs T_2 chart of solid tumor regions in different tumor types and CWM.