Small network properity changes in MCI with lacunar infraction

Wu Wenbo¹, Yin Zhenyu¹, Zhang Xin², Zhou Fei², Liu Renyuan¹, Wang Huiting², Zhu Bin², Zhang Bing², and Xu Yun¹

¹Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China, ²Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, China

Target audience: This study could help neurologist to improve understanding about the impairment pattern of lacunar infraction.

Purpose: Little is known about the influence of lacunar infraction on brain network properties in MCI patients. The network derived from resting-state bold has ability to assess the macroscopic damage in MCI patients with lacunar infraction. In this study, we construct the functional networks of human brains by resting-state functional magnetic resonance imaging (rsfMRI) and explore if there has characteristic impairment pattern in MCI patients with lacunar infraction compared with MCI patients without lacunar infraction.

Methods: Consecutive MCI patients with lacunar infraction (LI-MCI)(n=30), and MCI patients without lacunar infraction (noLI-MCI)(n=30) were recruited, and ageand sex-matched normal controls(n=30) were identified. All participants went for neuropsychological testing. The resting-state MRI data were acquired (sequence

parameters: TR: 2000ms ;TE: 30ms ;flip angle=90° ;35 axial slices ;voxel size 3mm*3mm*4mm) and preprocessed (using Gretna¹), and then constructed the functional network by using graph-theoretical analysis.

Results: Compared with NC and noLI-MCI, LI-MCI showed abnormal small-world property with lower σ , (p < 0.05, reflecting a less optimal topological organization of the network. In addition, compared with NC and noLI-MCI, LI-MCI showed higher node degree in left hippocampus, bilateral amgydala and left parahippocampus and increased node efficiency—in bilateral hippocampus, bilateral amgydala and left parahippocampus(p < 0.05 = (Fig. 1), corresponding better performance on memory test, suggesting a compensatory mechanism after lacunar infarction in MCI patients.

Discussion: In this study, we compared the small-world properties among the MCI patients with or without lacunar infraction and normal aging elderly by applying graph-theoretical analyses. Each group fit $\gamma > 1$, $\lambda = \approx 1$ and $\sigma > 1$, indicating human brain network were consistent with small-world properties in MCI patients and normal aging elderly. However, the σ in LI-MCI group was characterized by lower than NC group and noLI-MCI group, indicating the impairment of lacunar infraction to small-world network topological construction. In addition, a high C_p indicates that the nodes tend to form dense regional cliques, implying that the efficiency in local information transfer and processing are high; a low Lp indicates high transfer speed through the overall network, implying that the network has a high global efficiency. With the increased node efficiency and node degree of several brain region in LI-MCI patients, there might be a compensatory mechanism in LI-MCI patients²(Fig. 2).

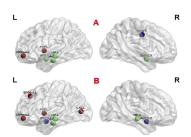


Figure 1: Small-world networks node properties. A: Node degree; B: Node efficiency. Red node: LI-MCI > NC (p < 0.05); green node: LI-MCI > NC & noLI-MCI (p < 0.05); blue node: NC > noLI-MCI (p < 0.05);

Conclusion: The functional brain networks in all 3 groups showed the property of small-world. However, lacunar infraction showed a more severe impairment on small-world network organization. But there might have a compensatory mechanism on episodic memory in LI-MCI patients, which could explain the different cognitive domain impairment in MCI patients.

Table 1:Small-world property for node degree

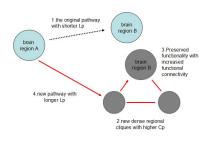


Figure 2: Theoretical interpretation of higher $\boldsymbol{C}_{\boldsymbol{p}}$ and

Node degree	NC	LI-MCI	noLI-MCI	ANOVA p	*	#	&
				value			
left middle orbital	6.1±2.2	7.4±2.0	5.8±2.9	P=0.047*	P=0.313	P=0.021	P=0.351
left putamen	5.2±2.0	6.7±3.2	5.4±1.9	P=0.049*	P=0.776	P=0.018	P=0.025
left hippocampus	5.7±3.0	7.9±3.7	6.7±3.0	P=0.048*	P=0.018	P=0.233	P=0.190
left parahippocampus	5.7±2.6	7.7±3.1	5.9±2.7	P=0.030*	P=0.010	P=0.712	P=0.030
Left amygdala	5.4±2.6	7.7±3.4	6.2±3.1	P=0.024*	P=0.067	P=0.313	P=0.069
right posterior cingulate	6.9±2.9	7.3±3.2	5.6±2.3	P=0.037*	P=0.028	P=0.040	P=0.655

higher L_p in LI-MCI patients. (1) the original *: NC < LI-MCI; #: NC > noLI-MCI; &: LI-MCI > noLI-MCI

- 1. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral cortex 2007;17:2407-2419.
- 2. Sole-Padulles C, Bartres-Faz D, Junque C, et al. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease. Neurobiology of aging 2009;30:1114-1124