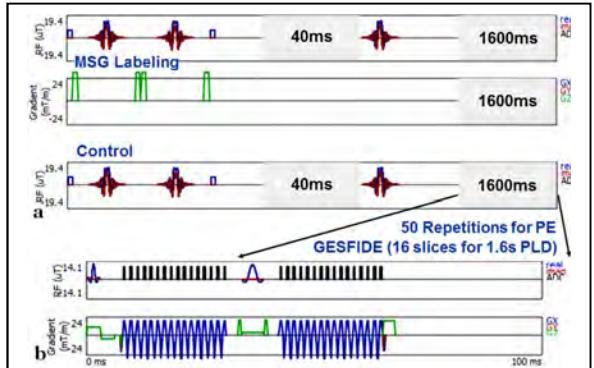


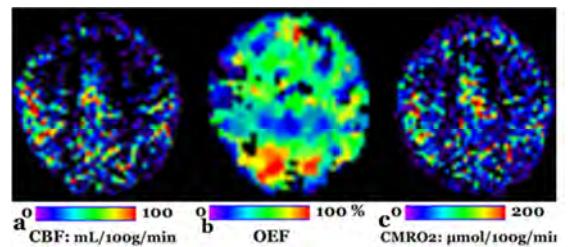
Simultaneous Voxel-wise Mapping of Oxygen Extraction Fraction, Blood Flow and Cerebral Metabolic Rate of Oxygen

Yongxia Zhou¹, Zachary B Rodgers¹, and Felix W Wehrli¹

¹Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States


Introduction: Simultaneous mapping of cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO₂) would provide insight into neurovascular and metabolic coupling and probe oxygen delivery and consumption at rest and activation [1]. However, all current methods are extremely involved and not practical in a clinical setting. Here we developed an MRI imaging protocol that integrates acceleration-based arterial spin labeling (Acc-ASL) for CBF and gradient echo sampling of free induction decay and echo (GESFIDE) [2] for OEF mapping [3], into a single sequence, and evaluated its performance by comparison to a recently reported whole-brain oximetry method [4].

Methods: The GESFIDE sequence used for R_{2'} mapping consisted of a train of 16 gradient echoes each before and after a refocusing π -pulse (echo spacing=1.47 ms, TE/TR=70/100 ms, matrix size =80x80, spatial resolution=2.75x2.75x7 mm³, 16 slices; positive readout only, bandwidth=2129 Hz). The GESFIDE block was inserted into the “post-label” period (PLD=1.66s) in the “control” module of the Acc-ASL block (Figure 1). During the repetition period of each control condition (in the ASL “label-control pair”), a phase encoding (PE) gradient was inserted at each multi-slice multi-echo GRE readout, in the GESFIDE portion of the sequence, to encode the y-dimension. The Acc-ASL sequence matched the spatial resolution of GESFIDE; and TE/TR=15/3924 ms. Total acquisition time was 405 sec with partial Fourier factor of 5/8 for GESFIDE PE. For the labeling module, a pair of identical non-selective 180° adiabatic refocusing pulses were placed symmetrically between the two anti-phase 90° RF pulses to reduce effects from magnetic field inhomogeneity (i.e. to correct phase shifts) and eddy currents. Acceleration parameters were chosen as in [5] to minimize signal loss from diffusion and cerebrospinal fluid signal contamination as well as to maximize gray matter (GM) SNR. Motion sensitizing gradients (MSG; G= 30 mT/m, MSG duration Δ =30 ms, and gradient duration δ = 1 ms; MSG gradients amplitude was set to zero for control module). The cut-off acceleration was 2.3 m/s². Background suppression using adiabatic inversion pulse was applied 50 ms after labeling. To evaluate the performance of the integrated sequences, separate scans of Acc-ASL and GESFIDE were also performed; and in two subjects test-retest scans were performed. Eight healthy volunteers (mean age = 30.4 ± 5.4 years) were examined at 3T (Siemens TIM Trio) at rest. From the time-course of the echo amplitudes before and after the π -pulse in the GESFIDE sequence, R_{2'} was derived, and a field map computed from the phase difference of two adjacent gradient echoes, to correct for macroscopic magnetic field inhomogeneity using the spatial finite difference algorithm of [6]. Finally, OEF was derived as in [3] and CBF was quantified from the Acc-ASL data as described in [5].


Results: Parametric maps of CBF, OEF and CMRO₂ are shown in Figure 2. Estimated mean OEF values obtained with separate and integrated sequences were not significantly different (32.7±2.6% from integrated sequence vs. 34.7±3.2% from separate GESFIDE sequence, paired t-test P=0.19). Test-retest scans showed good repeatability of parameters estimated, with inter-scan variability <5%. As expected, CBF was much greater in brain GM than in white matter (WM) (Figure 2a). OEF was relatively constant, with higher values in the occipital lobe and small prefrontal regions (Figure 2b). Regional CMRO₂ paralleled that of CBF, with higher values in GM than in WM, as well as areas of greater metabolic demand, such as frontal and posterior occipito-parietal regions (Figure 2c). Across-subject group means of global OEF, CBF and CMRO₂ were 32.7±2.6 %, 47.7±4.8 mL/100g/min and 123.8±11.1 μ mol/100g/min, respectively. The data are also suggestive of the expected negative correlation between global OEF and CBF across subjects ($r=-0.6$, $P=0.06$) (Figure 3a). CBF was significantly correlated with CMRO₂ ($r=0.81$, $P=0.016$), consistent with tight vascular-metabolic coupling in the resting state. There was no significant difference between global CMRO₂ measures using the present method and those obtained with a previously reported whole-brain susceptometry technique applied to the same study subjects (123.8±11.1 vs. 121.2±6.0 μ mol/100g/min, $P=0.75$). Lastly, whole-brain [4] and voxel-wise derived average CMRO₂ obtained in the same subjects were correlated with each other ($r=0.77$, $P=0.04$) (Figure 3b).

Discussion and Conclusion: The new integrated method for OEF and CBF quantification allows for CMRO₂ mapping in scan times of less than 7 minutes. CBF, OEF and CMRO₂ values obtained with the new integrated sequence are in good agreement with those from susceptometry and Yv-T₂ fitting methods [4,7]. Rigorous testing in larger study cohorts will be necessary to determine the method’s robustness and reproducibility.

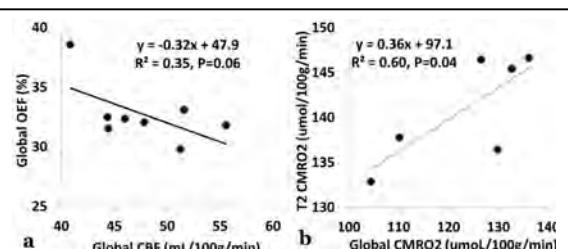

References: [1] Mintun et al, PNAS, 2001. [2] Ma and Wehrli, JMR, 1996. [3] He and Yablonskiy, MRM. 2007. [4] Rodgers et al, JCBFM, 2013. [5] Schmid et al, MRM, 2014. [6] Jensen et al, MRM 2006. [7] Xu et al, MRM 2009.

Figure 1. Integrated AccASL (a) and GESFIDE (b) sequence for simultaneous mapping CBF and OEF.

Figure 2. Voxel-wise one-slice map of OEF (a), CBF (b) and CMRO₂ (c) for a representative subject at rest.

Figure 3. a: Data suggesting association between global CBF and OEF ($r=-0.6$, $P=0.06$). b: Correlation between global voxel-wise CMRO₂ measures and CMRO₂ values based on the T₂-Yv method ($r=0.77$, $P=0.04$).