Changes in CBF/CMRO, coupling with graded visual stimuli are modulated by baseline perfusion
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Target audience: Researchers interested in BOLD physiology

Introduction: The BOLD response to a stimulus is acutely sensitive to the coupling n between CBF and CMRO,. There is emerging evidence that n
may be modulated by mental state (e.g. attention) or stimulus [1]; as shown by Liang et al who found that n varied with luminance contrast in the
visual cortex [2]. This demonstrated that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological
and metabolic processes. We investigated whether this divergence between CBF and CMRO, responses is also dependent on baseline CBF, which
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Figure 1: A) Mean BOLD (+SEM) response to each contrast level with * indicating significant differences (p < 0.5).
B) Mean CBF (+SEM) response to each contrast level. C) CBF/BOLD coupling based on mean values (+SEM) at Results: A one-way repeated measures ANOV A showed that only

each contrast level. All lines of best fit based on a power law, i.e. %BOLD=a(%contrast)’ D) CBF/CMRO, coupling .. .
based on mean values (+SEM) at each contrast level. Dotted grey lines show different n trajectories in the %ABOLD was found to be s1gn1ﬁcantly different between

CBF/CMRO; coupling space. conditions (p < 0.05) as seen in Fig. 1A. Post-hoc paired t-tests
showed a significant difference in the 5% contrast only (p=0.037). The average %ACMRO, (mean+SD) at 100% contrast during NC and HC was
15.94+4.3 and 7.6+12.1 respectively. Average %ACBF and %ACMRO, return n values of {2.2,2.4,2.6,2.8} and {2.8, 8.4, 4.5, 5.3} at each contrast
level for NC and HC respectively. Fig. 1C suggests different %ACMRO, between conditions at 100% contrast, but no significant difference was

found, reflecting the high degree of noise in estimated values. » nor — hwpercapnia
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These data highlight the complex physiological dependencies of the )
. . Figure 2: A) CBF vs. CMRO; for different assumed values of n (top to bottom n=2,3.4,5,6) at 100% contrast. B) The
BOLD response, and reinforce the desire for accurate measurement change in n (100% - 1%) for different assumed values of n at 100% contrast. Dotted lines indicate the values of n
of underlying physiology in order to fully understand BOLD signal  calculated with the Davis model.
changes. More data will improve statistical power and provide a more definitive picture of how baseline physiology alters CBF/CMRO, coupling.

Conclusion: Our study confirms that BOLD signal changes to different stimuli are not a true quantitative reflection of the relative changes in CBF
and CMRO,. Furthermore, differences in n between stimuli are dependent on baseline conditions, influencing BOLD signal changes. This may be
of serious concern for BOLD studies comparing healthy and clinical populations where changes in baseline CBF and CMRO, are expected.
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