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Target Audience
fMRI researchersin the field of resting-state fMRI; researchers studying the long-range dependence and self-similarity properties of fMRI BOLD time-series.
Purpose: The purpose of this study is to accurately estimate the Hurst exponent (H-value) of fMRI BOLD time series obtained at different sampling rates (TR), as a
means of demonstrating the change in H-value resulting from frequency aliasing due to a change in TR. Hurst values have been used in previous fMRI studies, e.g. to
distinguish between healthy controls and patients with Alzheimer's Disease’. We seek to answer the following questions in this study: How does the H-value change
with respect to the TR at which the data has been acquired, and if the change is subject-specific, and; Whether the change in H-value is limited to voxels in specific
parts of the brain, or whether all regions can be randomly affected. Although dependence of H-value on TR has been speculated before, no concrete study using multi-
subject, multi-TR datais available, and this study seeksto fill this gap.
Methods
Imaging: FMRI was performed on 6 healthy subjects (mean age 23 years) in a3.0 T Trio Tim Siemens MRI scanner equipped with a 12-ch head coil and parallel
imaging acquisition using EPI with imaging parameters: GRAPPA = 2, 32 reference lines, TE = 25 ms, FOV = 22 x 22 cm, 14 dicesin oblique axial direction covering
the prefrontal cortex, brainstem and cerebellum, thickness/gap = 3.0 mm/1.0 mm, resolution 64 x 64, BW = 2170 Hz/pixel (echo spacing = 0.55 ms) and 200 time
frames.For each subject, 20 different data sets corresponding to 20 different sampling rates (TR: { 700, 800, 900, ..., 2600} ms) were used.
Analysis: The first method for H-value estimation of all voxel time series for each subject uses the wavel et-based estimator?. The wavel et-based estimator is sensitive to
input signal length, and correct estimation of the H-value also depends on the mother wavelet used. To account for this, 5000 fractional Gaussian noise (fGn) sequences
with H-values ranging from 0.1 to 0.9 with 0.1 increments were generated, and the H-value estimated using db2, db3, db4 and db5 wavelets. The best estimation was
achieved using db3 wavelet, which was henceforth used for voxel time series. The second method for H-value estimation is based on Empirical Mode Decomposition
(EMD)?, which is a data adaptive signal decomposition technique. Unlike wavelets, EMD does not assume a pre-defined basis, rather the decomposition is data-
adaptive in nature. EMD iteratively decomposes a signal into a finite number of intrinsic mode functions (IMFs). EMD based H-value estimator® is similar to the
wavelet-based estimator, and alows estimation of the H-value through variance progression of IMFs, by estimating the slope 6 of the graph of IMF variance
log,(V[k]) plotted against the IMF index k, using the relation H = 1+ /2, given the rdation V[k] = €. 22Dk Decomposition using EMD is not affected by the
signal length, hence EMD is a good choice for H-value estimation of short length time series. The H-values of al the voxel time series estimated using the wavel et-
based estimator were found to adequately match the H-values estimated using EM D-based estimator, hence providing confidence in the estimated H-values for all voxel
timeseriesat al TRs.

Results: At each TR, the H-values for all voxel time series were averaged to find a mean H-value for each of the six subjects. The mean H-values per subject are plotted

against the TR values in Fig. 1, demonstrating changes in mean H-values with a change in TR. Furthermore, this change in the mean H-value is subject-specific, with

considerable difference in mean H-value of each subject at most TRs. For all subjects, an overall decreasing trend in mean H-values with an increase in TR is visible,

e.g. it ismore pronounced for subject #6, but much less for subject #4. Interestingly, the lowest mean H-values for all subjects occur at the typically used TR values, i.e.

between 2 sand 2.6 s. The distribution of H-values for subject #6 is shown for two TRs (1.1 sand 2.4 s) in Fig. 2, where the highest (0.66) and lowest (0.49) mean H-

values occur, respectively. As seen from Fig. 2, the decrease in mean H-value at TR = 2.4 sis caused by a decrease in the number of voxels having high H-values at this

TR, thereby suggesting a change in the frequency spectrum of individual voxel time-series from low-frequency (higher H-value) to a (relatively) higher frequency

(lower H-value) behavior (it should be remembered that the maximum frequenciesin atime-series are limited by the sampling frequency represented by the TR).

Also interesting in this context is the distribution of the H-
values across different brain regions. The distribution of
voxels with H-values H > 0.8 for subject #5 is shown in
Fig. 3(a), for a TR = 2.4 s (mean H-value = 0.51). This
corresponds to the previously reported concentration of
larger H-values in the cortical areas’. However, the
digtribution of voxels with H-values H > 0.8 for the same
subject a a low TR of 1.6 s, as shown in Fig. 3(b),
demonstrates a much larger spread of high H-value voxels
across brain regions. In the same context, Fig. 3(c) shows,
Fig. 1: mean H-values plotted against TR Fig. 2: Distribution of H-valuesat 2 TRs: Sub#6  for subject #6, the voxels whose H-value has changed from

H > 0.8toH < 0.4, going from TR 1.1 s (with highest mean H-value of 0.66) to 2.4 s (with lowest mean H-value of 0.50). As reported in previous studies, the lower

H-values are concentrated around the ventricles, however at alower TR all these voxels had high H-values. Finaly, Fig. 3(d) shows, for subject #4, the voxels having

H-value H > 0.8 a TR = 0.9 s (highest mean H-value of 0.67). Importantly, though, these voxels have aH-value of H < 0.4 at TR 2.0 (mean H-value 0.49, the lowest

for this subject), thereby demonstrating that voxels in regions of brain considered to be associated with certain H-values (high or low) can have different H-values

depending on the TR and the subject.

Discussion: The results presented here demonstrate dependence of the H-value on the sampling rate at which the fMRI data has been obtained. It should be mentioned
here that the H-value is related to the
spectral characteristics of a time-series.
Signals with a H-value H < 0.5 have a
prominence of high frequencies, whereas
signals with H > 0.5 are composed mainly
of low frequencies. The effect of aliasing is
more pronounced for low sampling
frequencies (high TRs), as signal frequency
components higher than the Nyquist

Fig3: (a) (b) (© (d) frequency f, are mapped into frequencies
lower than fy. This study also shows that
aliasing affects voxel time-series over a broad frequency spectrum. Our study also corroborates and quantifies previous findings relating the effect of aliasing by TR,

Conclusions:. We studied the Hurst exponent (H-value) of fMRI BOLD time series obtained at different TRs. The H-values were estimated using two different

methods. The dependence of the H-value on the TR was illustrated, and its effect over al regions of the brain was demonstrated. This has important implications for

works using the Hurst value for investigation of fMRI characteristics.
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