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Target audience:  This presentation will be of interest to those involved in patient or paediatric research using fMRI where motion control is particularly problematic. 
Purpose: Subject head motion negatively affects task based fMRI and connectivity based studies1,2 .We propose to develop a theoretical biophysical model for the 
identification and correction of subject head motion. 
Theory: To identify spurious variation a threshold needs to be set in terms of percentage signal intensity change. To estimate the percentage signal intensity change 
relative to baseline we assume that the Blood Oxygen Level Dependent (BOLD) signal can be modelled according to the following equation: S = Smax*e -TE/T2*, 
where S = BOLD Signal Intensity, Smax =100, TE= echo time and T2* = 1/R2 +1/R2’, R2 = spin-spin relaxation rate and  R2’ = relaxation due to magnetic field 
inhomogeneities. Empirical and theoretical models allow for the estimation of R2 and R2’ 3,4.  We can then solve the following equation to estimate BOLDmax (The 
threshold beyond which signals are likely to be artefactual):  ࢞ࢇ࢓  ࢊ࢒࢕࡮ ൌ כ࢔࢕࢏࢚ࢇ࢜࢏࢚ࢉ࡭૛ࡾࡱࢀିࢋ ࢞ࢇ࢓ࡿ െ ࡾࡱࢀିࢋ ࢞ࢇ࢓ࡿ૛כࢋ࢔࢏࢒ࢋ࢙ࢇ࡮

 
 

This model will break down in areas where the noise is exceptionally high such as at the edge of the brain and in the veins and arteries. However, these areas can be 
segmented automatically using the Expectation Maximisation algorithm on the median/ (median absolute deviation) image (which robustly estimates TSNR). This is 
possible as the median of S is a decreasing function of R2’ and the median absolute deviation of S is an increasing function of R2’. The ratio of these images is then 
sensitive to blood volume (Figure 1) as R2’ is scaled according to blood volume3.  Once these noisy areas are segmented a principle component analysis across voxels 
can be performed to obtain a parsimonious model of the temporal noise, here the first six principal components are extracted. These regressors can be included as effects 
of no interest in one's regression analysis in order to improve the motion model. We call this method Functional Image Artefact Correction Heuristic (FIACH). 

Methods: We validated FIACH using a sample of 42 
healthy children while performing a language task with 
known activations5, 6. These expected regions consisted 
of the following: left inferior frontal gyrus, bilateral 
superior temporal gyrus, bilateral middle temporal 
gyrus, bilateral primary motor, bilateral somatosensory, 
bilateral cerebellum, bilateral temporal pole, left 
hippocampus and supplementary motor area. There 
were 16 Regions of Interest (ROIs) in total. The scan 
parameters were as follows: 2D gradient echo EPI, 
1.5T, 30 slices (in ascending order), TR = 2.16s, 
TE=30ms, resolution = 3.3 x 3.3 x 4mm³. A number of 
other retrospective motion correction methods were also 
examined for the purpose of comparison. The other 
methods included were: Robust Weighted Least 
Squares7, Motion Fingerprint8, Realignment Parameter 
Expansion1, 9 and simply including the realignment 
parameters as effects of no interest in the GLM. 

Results:  FIACH had the highest t-value in 12 out of the 16 ROIs across all five methods. Using a binomial test this was found to be a statistically significant effect 
(p<.05). The probability of the proposed method having the highest t-value in the regions of interest = 0.75 (95% CI [0.476, 0.927]). FIACH had the maximum number 
of voxels in 12 out of the 16 ROIs across all five methods. Using a binomial test this was found to be a statistically significant effect (p<.05). The probability of the 
proposed method having the greatest extent in the regions of interest = 0.75 (95% CI [0.476, 0.927]).  Figure 1 displays the t-maps for the standard GLM (a) and for 
FIACH (b). Large differences can be seen in inferior frontal and inferior temporal areas 

Conclusion: We have developed a biophysically based 
framework for motion correction named FIACH. We have 
demonstrated its efficacy in a paediatric population during 
overt speech where subject motion is a severely limiting factor. 
We have shown that FIACH reveals additional brain areas 
involved in language at the group level (Figure 2). It also 
substantially increases the statistical power in language related 
areas relative to other methods. Furthermore, this methodology 
is capable of correcting data near inferior temporal areas. 
These areas have proven problematic for fMRI and FIACH 
provides the opportunity to improve knowledge of these areas 
function. 
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