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Target Audience: MR physicists and Neuroscientists interested in advanced fMRI imaging methodology. 
Introduction: In BOLD fMRI, image acquisition/reconstruction and data analysis are implemented as two separate steps, with a 4D (XYZT) data set 
as the output of the former and the input to the latter. In most applications, fMRI data is processed and reduced to timeseries associated with brain 
nodes or networks. Direct mapping of nodes or networks from highly undersampled raw fMRI k-space data (nMapping) (1) was introduced to 
provide dramatic increases in SNR efficiency when the geometry of the nodes/networks is known. In (1), the theoretical basis for nMapping is 
described, and using synthetic data, increases in SNR per unit time of over an order of magnitude are anticipated for nMapping of several hundred 
nodes/networks, when compared to conventional fMRI using the Human Connectome Protocol (HCP) (2). We demonstrate here the use of fully 
sampled human fMRI data, undersampled to simulate nMapping data acquisition, to determine the degree 
to which undersampled nMapping data captures the relevant variance in the fMRI signal. 
Methods: The requirements for the nMapping process are 1) a parcellation of the brain; and 2) a 3D k-
space trajectory. The linear relationship between the coefficients of the parcels (the nMap) and the MR 
signal can be expressed by a simple encoding matrix which is derived directly from the MR signal equations 
integrated over the parcels. For a k-space trajectory k and nMap coefficients x, the MR signal S can be 

expressed as ܵ ൌ ࢐࢏࡭ where the elements of the encoding matrix A are	ݔܣ ൌ ׬ ࢏ࢂ࢘∙࢑࢐࢏ࢋሺ࢘ሻ࢏࢝  ,ࢂࢊ

where the integral is over the volume Vi of the ith parcel, the weight wi is the relative weight of the 
element over space, and j indexes over the k-space points acquired. For parcels Vi that fall over a uniform 
Cartesian grid, A reduces to the Fourier encoding matrix. When there are more k-space points than parcels, 
this represents an over-determined set of equations that can be directly solved for the nMap coefficients x 
using least squares estimation. A 278 parcel functional atlas from Shen (3) was used, and a single shot 
‘yarn ball’ 3D k-space trajectory, shown in Figure 1, was used to simulate nMap data acquisition. The 
trajectory is parameterized by: x(t)=r•sin(φ)sin(θ); y(t)=r•(cos(φ)sin(θ)cos(γ)-cos(θ)sin(γ)); z(t)=r•(cos(φ)sin(θ)sin(γ)+cos(θ)cos(γ)), where θ ranges 
from 0-48•2π, φ=0.236 θ, γ=0.0204 θ, r=0.62cm-1(θ/θmax)

0.614, and θ (t) was time optimized using (4). The parameters were numerically optimized to 
minimize the condition number of the encoding matrix. The duration of the trajectory was 23.6 ms, compared to a 720ms TR for the HCP protocol. 
Resting state and motor task BOLD fMRI data was downloaded from the WU-Minn HCP database. The mean signal over each parcel was calculated 
and used as reference timecourses. Simulated nMap k-space data S was calculated by integration of the MR signal equation for each k-space point. 
The signals x in each parcel were then calculated from this signal by direct least squares estimation: x~A\S, and compared to the reference signal. 
Results: The parcel time courses estimated using nMapping agreed well with the 
corresponding reference signals, with a mean correlation of 0.84 for both the 
resting state and motor task data sets. A correlation matrix of reference vs nMap 
timecourses is shown in Figure 2a, demonstrating the expected symmetry and 
high values along the diagonal. A map of the correlation coefficients by parcel, 
viewed from above the brain, is shown in Figure 2b. Representative images of the 
reference and nMap estimated signals across parcels are shown in Figure 3, 
demonstrating similar patterns.  
 Discussion: We demonstrate here that using a generic parcellation of the brain, a 
large fraction of the information that is present at the parcel level in BOLD data is 
captured by an nMapping process that uses less than one tenth of the data 
acquisition time of the HCP protocol. The residual discrepancy is likely dominated 
by inaccuracy of the assumption that the signal across each parcel is uniform. Per-
subject parcellation is expected to improve the validity of this assumption. This 
work does not yet take advantage of parallel imaging, which should afford 
additional acceleration. The highly accelerated nMap data acquisition can be used 
to increase SNR per unit time, increase statistical power, and employ multi-echo 
methods to increase BOLD specificity (5). This approach shares high temporal 
resolution with MR Encephalography (6) and Inverse Imaging (7), but the use of 
prior information about the functional geometry allows for the problem to be 
highly over-determined and SNR efficient. Incorporating the principles of spatio-
temporal separability (8) may allow for simultaneous estimation of both parcel 
geometry and temporal signals. 
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Figure 1: ‘Yarn ball’ trajectory. 
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Figure 2: a) Correlation matrix between fully sampled 
and nMap parcels; b) Correlations by parcel (diagonal 
elements of Fig. 2a). 

Figure 3: Example time frames of parcel maps 
reconstructed from fully sampled data, and from 
nMap estimates.
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