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Target Audience: MR physicists and Neuroscientists interested in advanced fMRI imaging methodology.
Introduction: In BOLD fMRI, image acquisition/reconstruction and data analysis are implemented as two separate steps, with a 4D (XYZT) data set
as the output of the former and the input to the latter. In most applications, fMRI data is processed and reduced to timeseries associated with brain
nodes or networks. Direct mapping of nodes or networks from highly undersampled raw fMRI k-space data (nMapping) (1) was introduced to
provide dramatic increases in SNR efficiency when the geometry of the nodes/networks is known. In (1), the theoretical basis for nMapping is
described, and using synthetic data, increases in SNR per unit time of over an order of magnitude are anticipated for nMapping of several hundred
nodes/networks, when compared to conventional fMRI using the Human Connectome Protocol (HCP) (2). We demonstrate here the use of fully
sampled human fMRI data, undersampled to simulate nMapping data acquisition, to determine the degree
to which undersampled nMapping data captures the relevant variance in the fMRI signal.

Methods: The requirements for the nMapping process are 1) a parcellation of the brain; and 2) a 3D k-
space trajectory. The linear relationship between the coefficients of the parcels (the nMap) and the MR
signal can be expressed by a simple encoding matrix which is derived directly from the MR signal equations
integrated over the parcels. For a k-space trajectory k and nMap coefficients x, the MR signal S can be

expressed as S = Ax where the elements of the encoding matrix A are Aij = fV- Wi(r)eiki'r dav,
L

where the integral is over the volume V; of the ith parcel, the weight w; is the relative weight of the
element over space, and j indexes over the k-space points acquired. For parcels V; that fall over a uniform
Cartesian grid, A reduces to the Fourier encoding matrix. When there are more k-space points than parcels,
this represents an over-determined set of equations that can be directly solved for the nMap coefficients x
using least squares estimation. A 278 parcel functional atlas from Shen (3) was used, and a single shot Figure 1: ‘Yarn ball’ trajectory.
‘varn ball’ 3D k-space trajectory, shown in Figure 1, was used to simulate nMap data acquisition. The

trajectory is parameterized by: x(t)=resin(¢)sin(0); y(t)=re(cos(d)sin(8)cos(y)-cos(0)sin(y)); z(t)=re(cos(d)sin(0)sin(y)+cos(B)cos(y)), where O ranges
from 0-48¢2m, $p=0.236 6, Y=0.0204 6, r:0.62cm'1(9/9max)0'614, and 0 (t) was time optimized using (4). The parameters were numerically optimized to
minimize the condition number of the encoding matrix. The duration of the trajectory was 23.6 ms, compared to a 720ms TR for the HCP protocol.
Resting state and motor task BOLD fMRI data was downloaded from the WU-Minn HCP database. The mean signal over each parcel was calculated
and used as reference timecourses. Simulated nMap k-space data S was calculated by integration of the MR signal equation for each k-space point.
The signals x in each parcel were then calculated from this signal by direct least squares estimation: x~A\S, and compared to the reference signal.
Results: The parcel time courses estimated using nMapping agreed well with the
corresponding reference signals, with a mean correlation of 0.84 for both the
resting state and motor task data sets. A correlation matrix of reference vs nMap
timecourses is shown in Figure 2a, demonstrating the expected symmetry and
high values along the diagonal. A map of the correlation coefficients by parcel,
viewed from above the brain, is shown in Figure 2b. Representative images of the
reference and nMap estimated signals across parcels are shown in Figure 3,
demonstrating similar patterns.

Discussion: We demonstrate here that using a generic parcellation of the brain, a
large fraction of the information that is present at the parcel level in BOLD data is
captured by an nMapping process that uses less than one tenth of the data Figure 2: a) Correlation matrix between fully sampled

acquisition time of the HCP protocol. The residual discrepancy is likely dominated and nMap parcels; b) Correlations by parcel (diagonal
by inaccuracy of the assumption that the signal across each parcel is uniform. Per-  elements of Fig. 2a).

subject parcellation is expected to improve the validity of this assumption. This

work does not yet take advantage of parallel imaging, which should afford

additional acceleration. The highly accelerated nMap data acquisition can be used

to increase SNR per unit time, increase statistical power, and employ multi-echo

methods to increase BOLD specificity (5). This approach shares high temporal

resolution with MR Encephalography (6) and Inverse Imaging (7), but the use of

prior information about the functional geometry allows for the problem to be

highly over-determined and SNR efficient. Incorporating the principles of spatio-

temporal separability (8) may allow for simultaneous estimation of both parcel

geometry and temporal signals.
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