
Figure 2: t-values of the 
simulation. Each volume of the 

atlas with own colormap

Figure 3: CNR values in a selection of volumes, relative to the 
CNR of the reference timeseries. Method 1a in pink, 1b in 
black, 2 in blue. The light red line indicates a measure of 

spatial phase coherence, ranging from 0 to 1, in the volumes. 
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Figure 4: Real time series averaged 
over a part of the visual cortex. 
Reconstructed via method 1a 

(pink) and frame-by-frame (black) 
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Target audience: The presented method is designed for real-time fMRI applications with a low number of predefined volumes of interest. 
Purpose: Real-time fMRI has the requirement of fast image reconstruction for subsequent data analysis, and so 
forbids the expensive iterative reconstructions of undersampled nonlinear trajectories inhering high temporal 
resolution during the fMRI measurement. However, it is shown that when restricting the reconstruction to a 
number of volumes, the average time series of the signal from within the volumes can be computed efficiently. 
Using precalculations, the signal from one volume can then be obtained by a single scalar product in the signal 
domain. This enables to estimate the activation in the target volumes, while the whole dataset of undersampled 
data remains available for extensive retrospective analysis. The advantages of nonlinear trajectories are 
consequently accessible to real-time fMRI studies. 
Methods: The target volumes ࢏ࢂ need to be determined before the real-time scan, e.g., from a functional prescan 
with paradigm, using ICA, using standard atlases or anatomical constraints. For the reconstruction of the average 
time series two methods were investigated:  
1) The complex sum over all voxels contained in ࢏ࢂ can be expressed via the scalar product < ࢓,࢏ࢂ >	= < ,࢏ࢂ ࢙	ࢉࢋ࢘ࡱ >, where the signal equation ࢙ =  ,ࡱ via the forward operator ࢓ relates the signal ࢙ and the image ࢓ࡱ
and ࢉࢋ࢘ࡱ represents the reconstruction operator. When ࢉࢋ࢘ࡱ is linear, the scalar product can be rewritten as < ∗ࢉࢋ࢘ࡱ ,࢏ࢂ ࢙ >, where * denotes the conjugate transpose. This means that after calculation of all ࢉࢋ࢘ࡱ∗  can be retrieved from ࢏ࢂ the summed signal from all ࢏ࢂ
signal space via one matrix product (Method 1a). This formulation also permits to include an image phase for each voxel in ࢏ࢂ in order to minimize intra-volume 
dephasing effects. The phases can be obtained by one reconstruction  ࢙ࢉࢋ࢘ࡱ from a prescan prior to the reconstructions ࢉࢋ࢘ࡱ∗   .(Method 1b) ࢏ࢂ
2) Another option is to use a strongly simplified signal equation	࢙ =  similar to the method suggested by Wong1, that maps the MR signal straight to the ,࢜࡭
predefined volumes. In this approximation the elements of the encoding matrix are ܣ௡௜ = ܸ݀	௝௞೙௥݁	(ݎ)௜ݓ׬ ≈ 	∑ ௜௠ݓ	௡௠ܧ  ௠ݓ where the weighting factors ,(௠ݔ)
define the volumes. Here, the number of volumes was chosen to be 90, i.e., all volumes of the functional ROI atlas2. After its calculation, the matrix ࡭ is small 
enough to be inverted via direct pseudo-inverse.  
A simulation (fig. 2) of a complex time series was used to investigate generic effects of both methods, and method 1 was applied exemplary to a real time series 
of a functional scan with visual stimulus. The first frame of the real time series served as underlying image for the simulation data. The latter was created by 
random amplitude BOLD modulation at maximal 5% of the subjected voxels’ intensity. These voxels were contained in volumes of the functional ROI atlas, 
coregistered with a prescan, and gaussian pink noise with spatial correlation was adjusted such that the average contrast-to-noise ratio (CNR) over all BOLD-
modulated voxels was 1. Both real and simulated data were a 32-channel signal from a single shot sub-100ms stack-of-spirals trajectory3 (fig. 1). The nuFFT-based 
forward operator was used for the creation of the simulation data, as well as the reconstructions. The latter, if not by direct pseudo-inverse, was performed 
minimizing a cost-function using a conjugate gradient method with 20 iterations.  
As reference time series for each volume in the simulation, the absolute values from the voxels inside each volume were 
averaged prior to simulating the measurement. 
Results: In fig. 3 the CNR from each method relative to the reference CNR is plotted over volumes. To account for the 
random distribution of BOLD amplitudes inside the volumes, only those with more than 50 voxels have been considered. 
The light red line represents a measure of spatial phase coherence inside each volume, ranging from 0 to 1, calculated from 
the first frame via  1/ ௜ܰ 	∑ ݉௡/ܾܽݏ(݉௡)௡∈௏೔ 	, ௜ܰ  being the number of voxels inside ࢏ࢂ. The average CNR over all plotted 
volumes using the different methods are: 1.2 (reference), 0.94 (1b), 0.72 (1a) and 0.51 (2). Fig. 4 shows a reconstruction of 
the real time series averaged over a part of the visual cortex. The pink line represents the time series reconstructed via 
method 1a, the black line represents the sum of absolute values obtained via conventional frame-by-frame reconstruction. 
The ratio of CNR in both time series is 1.0. 
Discussion: The CNR values of Method 1b) are highest in all volumes, where those of Method 2 are lowest. Only with 

decreasing phase coherence the CNR values of Method 1a 
and 1b show significant differences. The average CNR of 
Method 1b is the near the overall average of 1. 
Conclusion: The investigated methods show potential to extract information from nonlinear 
trajectories in rtfMRI, which could be used for neurofeedback studies. Assuming the volume of 
activation is known before the feedback measurement, method 1 shows reasonable average 
CNR values with options for improvement in case the ROI is prone to intra-volume dephasing. 
Method 2 exhibits lower CNR, which is assigned to the 
cruder violation of the signal equation. As the 
precalculations can only be performed with the 
knowledge of sensitivity maps, i.e., while the subject is 
lying in the scanner, reconstruction efficiency is crucial. 
However, as precalculation time increases linearly with 
the n  umber of ROIs, restriction to a low number of ROIs, 
as common in neurofeedback-fMRI, facilitates the 
workflow. The influence of higher regularization 
parameters and the degree of time-segmentation for off-
resonance correction will be investigated in the future, 
as will be the influence of subject motion. 
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Figure 1: Single shot stack-of-spirals 
trajectory  
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