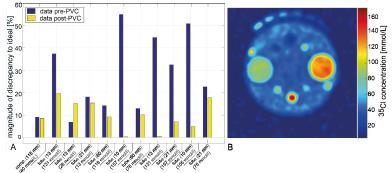
In vivo Chloride Quantification with Partial Volume Corrected 35Cl-MRI

Sebastian C. Niesporek¹, Aaron S. Kujawa¹, Nadia Benkhedah¹, and Armin M. Nagel¹


Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

TARGET AUDIENCE Scientists and physicians interested in the field of non-proton MRI

PURPOSE Chloride plays a key role in many physiological processes [1]. Thus, a non-invasive determination of the chloride concentration by ³⁵Cl-MRI is desirable. However, the ³⁵Cl-nucleus experiences extremely fast transverse relaxation [2] and an *in vivo* signal which is reduced by six orders of magnitude compared to protons (¹H). Nevertheless, the feasibility of *in vivo* ³⁵Cl-MRI of human muscle and brain has recently been demonstrated [2]. For ³⁵Cl-MRI pulse sequences that enable ultra-short echo-times and high SNR efficiency such as 3D density adapted radial or twisted projection imaging [3] are necessary. Still, only resolutions of (>6mm)³ are achievable within acceptable acquisition times. Additionally, the applied acquisition schemes and fast T₂*-relaxation lead to large full widths at half maximums (FWHM) of the *point spread functions* (PSF). The large voxel dimensions and the additional broadening of the PSF result in partial volume (PV) effects that decrease the accuracy of quantitative concentration measurements. For sodium (²³Na) MRI a partial volume correction (PVC) algorithm, based on a method for positron emission tomography by Rousset et al. [4], was presented that enabled improved quantification [5]. This method was now applied to *in vivo* ³⁵Cl-MRI.

METHODS A phantom was used to test the correction and quantification performance of the PVC. A silicone-caoutchouc cushion filled with 2% w/w agarose gel and different NaCl-concentrations (25-150 mmol/L) [6] was used for quantification of the signal (Fig 1.B). Imaging was conducted on a 7T MR system (Magnetom 7T, Siemens AG, Healthcare Sector, Erlangen, Germany), where image acquisition was performed with a density adapted projection pulse sequence (3D-DAPR [7]). For phantom imaging the following parameters were applied: TR/TE=150ms/0.5ms, 10000 projections, 990%, nominal resolution: 1000%, 1000%

In vivo quantification: PVC as described in the previous ²³Na-MRI approach [5] with relaxation weighting of the PSF (brain matter (BM): $T_{2s}^*=1.2$ ms, $T_{2l}^*=7$ ms and $T_1=9.2$ ms [2]; CSF: $T_2^*=T_1=35$ ms) was applied to 35 Cl-data sets of three healthy volunteers with two experiments each. Data sets were acquired with a 3D-DAPR pulse sequence (TR/TE=125ms/0.4ms, 6000 projections, $(6.5 \text{mm})^3$, $\Theta = 90^\circ$, $T_{Acq} = 12 \text{min } 30 \text{s}$, Fig. 2.A) with additional correction of B₁- and B₀-inhomogeneity, as in the phantom study. The chloride tissue concentration (CTC) was calculated for two separate CSF compartments (lateral ventricles (CSF_i) and sulci (CSF_o), same expected CTC) and for BM. Signal of the reference cushion (Fig. 2.B) was also PV-corrected to prevent underestimation of the calibration. Structural information of the cushion was obtained with a proton 3D-GRE (TR/TE=8.1ms/4.88ms, $\Theta=10^{\circ}$, (1mm)³) and segmented manually. Correction behavior of the two CSF compartments with the calculated difference Δ_{CSF} between CSF_i and CSF₀ was used as an intrinsic correction control.

Fig.1:(A) Plotted magnitude of discrepancy for phantom data before (blue) and after correction (yellow), an improvement in quantification accuracy is seen for post-correction data. (B) Used ^{35}Cl -data ($(6mm)^3$, TR=150ms, TE=0.5ms) for quantification.

[mmol/L]

RESULTS Performance of phantom PVC and calibration was directly verified with known $^{35}\text{Cl}\text{-}\text{concentrations}$ of eleven reference tubes (Fig.1.B). The magnitude of discrepancy of obtained to expected concentration values before and after correction was calculated and plotted (Fig. 1.A). A mean reduction of discrepancy of 16% is seen after correction. *In vivo* data showed a cutback of mean Δ_{CSF} from 35.8% to 5.4% and an upward correction for both CSF values (Tab.1). Brain matter CTC was shifted downward from 32 mmol/L to 27 mmol/L (-15.6%).

DISCUSSION The PV effects were reduced by a PVC algorithm that allowed a strongly improved quantification for ³⁵Cl-MRI. For phantom measurements, heavy PV influence was seen (mean discrepancy 27%). True values were recovered, quantified and verified with known concentration values. Results of the phantom study showed correction capability of the algorithm and quantification capacity of the reference cushion. For *in vivo* measurements the intrinsic correction control indicates good correction behavior: CSF CTC values were shifted closer together and the theoretical ³⁵Cl-concentration for both CSF compartments was met (99-110 mmol/L). BM CTC was corrected downward as expected and was lower than previously reported values [2], where PV effects were not considered. However, the calculated CTC might be underestimated due to the fast transverse relaxation of ³⁵Cl in tissue.

CONCLUSION Correction capability of a previously introduced PVC algorithm for ²³Na-MRI [5] was demonstrated for ³⁵Cl-MRI where much stronger PV influence due to larger voxel sizes is expected. The correction and quantification approach allowed absolute ³⁵Cl-quantification in the human brain, where PV-bias was strongly reduced.

Tab. 1: Mean values \pm std. of CTC for in vivo experiment CSF_o CSF: mean diff. BM $\Delta_{\text{CSF}}[\%]$ [mmol/L] [mmol/L] [mmol/L] Pre-PVC 35 ± 2 54 ± 4 35.8 ± 2.7 32 ± 3 [mmol/L] Post-PVC 98 ± 7 100 ± 4 5.4 ± 3.1 27 ± 3

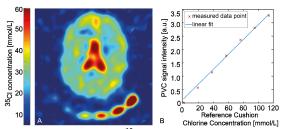


Fig. 2: (A) Used ³⁵Cl in vivo data ((6.5mm)³, TR/TE=125ms/0.4m) with signal of reference cushion (zoomed FOV 228x228x228 mm).(B) result of fit (blue) with PV-corrected data of calibration cushion (red).

REFERENCES

[1] Jentsch et al., Physiol Rev 2002 (2): 503-68 [2] Nagel et al., Radiology 2014 (2): 585-95 [3] Konstandin S, Nagel AM., MAGMA 2014 (27):5-19, [4] Rousset et al., J Nucl Med 1998(5):904-911, 1998, [5] Niesporek et al., Proc. Intl. Soc. Mag. Reson. Med. 22 (2014), p. 1523 [6] Mirkes et al., Magn Reson Med 2014; 10.1002/mrm.25096 [7] Nagel et al., Magn Reson Med 2009 (62):1565-73 [8] Morell, Magn Reson Med 2008 (60):889-94