

1H-MRS of Human Pancreas Grafts: Relaxation Times and Metabolite Concentrations

Jan Weis¹, Lina Carlbom¹, Lars Johansson¹, Alireza Biglarnia², Olle Korsgren³, and Håkan Ahlström¹

¹Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden, ²Department of Surgical Sciences, Uppsala University, Uppsala, Sweden, ³Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden

Target Audience

This study is determined to the researchers involved in pancreas MR spectroscopy and transplantation.

Introduction

Transplantation of pancreas or insulin produced islets of Langerhans are the treatments of choice for the patients whose pancreas does not make enough, or sometimes any insulin. Increased pancreatic fat content is contraindication for transplantation because fatty pancreas is difficult to procure. Extensive fatty infiltration is also associated with an increased risk for complications after surgery. In the present work, we applied ¹H-MRS to pancreas grafts during the cold preservation. Our aim was to measure pancreatic water, total choline (tCho) and fat (-CH₂)_n relaxation times T₁ and T₂ and estimation the absolute concentration of tCho and fat.

Methods

Pancreas grafts from 8 human donors were measured. Informed consent was obtained from all families. The study was approved by The Regional Ethical Review Board. Each pancreas was perfused *in situ* with histidine-tryptophan-ketoglutarate (HTK) solution and placed into transport container filled with HTK solution. Temperature inside container was maintained at 4±1 °C by cooling ice-elements (Fig. 1). Median donor age was 69 years (range: 24-82) and mean body mass index was 27±4.3 kg/m² (range: 22.2-31.9). Experiments were performed on a 1.5 T clinical scanner (Philips, Achieva) using a transmit-receiver head coil. Single-voxel spectra were acquired using PRESS sequence (spectral bandwidth 1000 Hz, 1024 points). Typical voxel size was 10x10x20 mm³. Voxel was placed within the body of the pancreas (Fig. 1). Water T₁ and T₂ relaxation times were computed using spectra acquired at ten TRs (range: 300-5000 ms, number of scans (NS) 16, TE 30 ms), and eight TEs (range: 30-200 ms, TR 3000 ms, NS 16). The T₁ values of tCho and lipid line (-CH₂)_n were estimated from the spectra measured at TE 25 ms and TRs between 550, and 1600 ms (NS 128). T₂ values of tCho and (-CH₂)_n resonances were estimated using the spectra measured at TE range 30-150 ms (TR 1500 ms, NS 128). Fat and tCho content were quantified using the spectra acquired with TR/TE 5000/30 ms and NS 64. Spectra were processed in time domain using MRUI software package¹. Spectral intensities were fitted to Lorentzian line shapes (Fig. 2). Relaxation times were estimated by monoexponential fitting of the spectral intensities (Fig. 3) by a software package ORIGIN (OriginLab, Northampton, MA). Lipid and tCho content was estimated from relaxation corrected spectral intensity ratios to unsuppressed water line². Reference concentration 38 300 mM of “NMR-visible” water in the pancreas was used for this purpose. We assumed that pancreas contains 0.71 g H₂O per 1 g wet weight (ww) tissue³ and its density is 1.08 g/cm³. Furthermore, it was assumed that 10% of tissue water is “NMR-invisible”. Absolute lipid concentration was quantified using (-CH₂)_n intensities². Lipid content was also expressed as the ratio of fat (-CH₂)_n over water spectral intensity (f/w*100%).

Results

Grafts from 5 donors were used for relaxation times estimations. Relaxation times are reported for water (T₁, 670±69 ms; T₂, 77±17 ms), tCho (T₁, 876±147 ms; T₂, 103±22 ms), and lipid (-CH₂)_n (T₁, 287±60 ms; T₂, 27±4.4 ms). tCho was detectable in the spectra of six grafts. Mean tCho concentrations was 12.4±3.1 mmol/kg ww (range: 8.2-16.6). Median f/w spectral intensity ratio and total fat concentration were 2.0 % (range: 0.3-21.7), and 22.8 mmol/kg ww (range: 3.1-248.1), respectively. Spectral interval 3.5-4.2 ppm (Fig. 2) was empirically fitted by three Lorentzians. This range contains a large number of signals with high degree of overlap (glucose, glycerol, amino acids, etc.)⁵.

Discussion

This is the first ¹H-MRS of human pancreas grafts. *In vivo* estimation of pancreatic water T₁ (584±14 ms) and T₂ (46±6 ms) was performed by de Bazelaire et al⁴. Our longer T₂ can be explained by the fact that the blood was replaced by HTK solution. To our knowledge, there are no previous T₁, T₂ estimates of tCho and fat (-CH₂)_n at 1.5 T that can be compared with our results. tCho concentration and f/w ratio are in line with *in vivo* 3T results³.

Conclusion

Knowledge of the relaxation times enables quantification of pancreas graft metabolite concentrations using water as the internal concentration reference. From clinical point of view is pancreatic fat content useful for inspection the pancreas graft quality prior to transplantation or islet of Langerhans isolation. Assessment of tCho concentration is important in differentiation between normal and malignant tissue.

References

1. Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA 2001;12:141-152.
2. Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 2006;19:968-988.
3. Ouwerkerk R, Gharib AM. ¹H-MRS of pancreatic metabolites. In Proceedings of the 20th Annual Meeting of ISMRM, abstract 1373, 2012.
4. De Bazelaire CMJ, Duhamel GD, Rofsky NM, et al. MR imaging relaxation times of abdominal and pelvic tissues measured *in vivo* at 3T: preliminary results. Radiology 2004;230:652-659.
5. Misra D, Gupta V, Sonkar AA, et al. Proton HR-MAS NMR spectroscopic characterization of metabolites in various human organ tissues: pancreas, brain and liver from trauma cases. Physiol Chem Phys & Med NMR 2008;40:67-88.

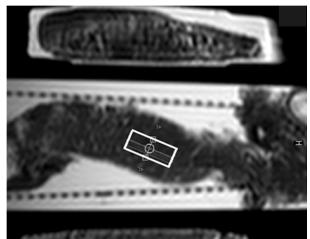


Fig. 1: Voxel position in transport container and two cooling ice-elements.

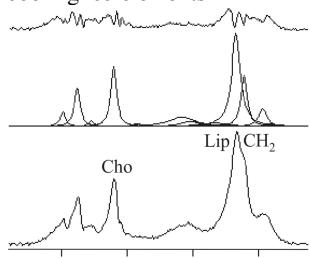


Fig. 2: The spectrum, fits and residue.

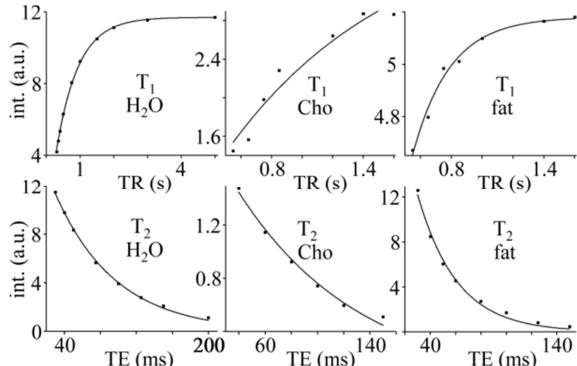


Fig. 3: Mono-exponential fits of spectral intensities vs. TR and TE.