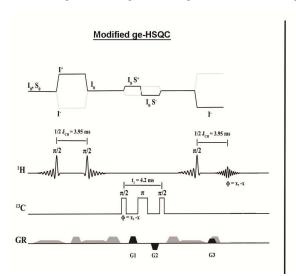
Quantum coherence spectroscopy to measure 1D ¹H-[¹³C]-lipid signals

Lucas Lindeboom^{1,2}, Robin A de Graaf³, Christine I Nabuurs^{2,4}, Matthijs KC Hesselink⁴, Joachim E Wildberger², Patrick Schrauwen¹, and Vera B Schrauwen-Hinderling^{1,2}


¹Department of Human Biology, Maastricht University Medical Center, Maastricht, Netherlands, ²Department of Radiology, Maastricht University Medical Center, Maastricht, Netherlands, ³Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States, ⁴Department of Human Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands

Target Audience

Researchers and clinicians interested in indirect ¹³C spectroscopy (of lipids).

Purpose

Due to the low natural abundance of carbon-13 (¹³C), and hence low incorporation in endogenous lipids, ¹³C-enriched lipids are an excellent candidate to be used for *in vivo* tracer studies [1]. In order to enhance the detection sensitivity spectral editing techniques for the indirect detection of ¹³C have been proposed. These techniques also offer the opportunity to use regular ¹H localization techniques. Gradient enhanced heteronuclear single and multiple quantum coherence spectroscopy (ge-HSQC or ge-HMQC respectively [2]) allows for acquisition of ¹H-[¹³C] signals while simultaneously spoiling unwanted ¹H-[¹²C] signals. Although intrinsically 50% of the ¹H-[¹³C] signal is lost, this single shot acquisition technique may be preferable to subtraction-based editing methods (e.g. POCE [3]) for ¹³C detection in tissues where movement artifacts and/or low ¹³C fractional enrichments are expected. However, the large chemical shift of ¹³C resonances of the lipid signal will lead to signal intensity loss and phase distortions when the conventional ge-HSQC and ge-HMQC sequences are applied as 1D editing technique. In this study we compared the use of modified ge-HSQC and ge-HMQC sequences, which were designed to refocus the chemical shift in the heteronuclear dimension to get 1D ¹H-[¹³C]-lipid spectra.

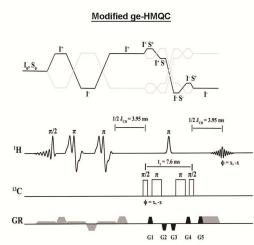


Figure 1. Modified ge-HSQC and ge-HMQC sequences as used in this study.

Experiments were performed on a 3T clinical MR system (Achieva 3T-X, Philips Healthcare, NL) using a butterfly-loop ¹H TX/TR quadrature coil combined with two 16cm 13C TX/TR surface coils in quadraturemode for optimal ¹H receiving sensitivity (RapidBiomed, GE). The two sequences used are depicted in figure 1. For ge-HSQC, the sequence represents a modification of a recently described method [4], where the coherences are formed during the TM mixing period of a STEAM localization sequence. A single ¹³C inversion pulse was inserted during the evolution period. Coherence selection gradients (length 1 ms) were used in a ratio of 2:-2:1. The duration of the hard ¹³C excitation pulse was 340 µs, leading to

Methods

an evolution period of 4.2 ms. For the ge-HMQC, the quantum coherence module was placed after PRESS

localization. In this case, two additional ¹³C inversion pulses were inserted to refocus ¹³C chemical shift. Selection gradients (length 0.5 ms) were used in a ratio of 1:1:-1:1:1, leading to an evolution time of 7.6 ms. Total TE was 29 ms. In both sequences, the first ¹³C pulse was phase cycled to improve spoiling of unwanted coherences. Offset of the ¹³C pulses was set at the midchain ¹³C-CH₂ resonance (~29 ppm). Four different spectra were acquired, to compare HSQC versus HMQC and to show the effect of the extra inversion pulse(s) in both sequences. All experiments were acquired from a 20 x 40 x 40 mm volume, placed in a phantom filled with Intralipid (a stable emulsion with of 20% soybean oil, 1.1 % ¹³C) with TR = 2000 ms, 1/2J = 3.95 ms and NSA = 128. A lipid reference signal was obtained by turning off the dephasing gradients and by setting the frequency of the ¹³C RF pulses far off resonance.

Results

The four different spectra acquired are depicted in figure 2. It is apparent that the insertion of the $^{\rm 13}C$ inversion pulses resulted in non phase distorted lipid signals with an increased signal intensity. The effective bandwidth of the $^{\rm 13}C$ refocusing pulse was sufficiently large for unambiguous detection of lipid methyl and methylene signals. The $^{\rm 1}H-[^{\rm 13}C]-CH_2$ and $-CH_3$ signal is higher in the modified ge-HSQC sequence when compared to the modified ge-HMQC (calculated enrichment 0.9% vs. 0.6% respectively). The increased signal loss in ge-HMQC is likely due to the larger number of RF pulses as well as the non-refocused evolution of passive spin couplings in this sequence.

Discussion and Conclusion

We have shown that the addition of ¹³C inversion pulses to both the ge-HSQC and the ge-HMQC is essential to obtain ¹H-[¹³C]-lipid signals without phase distortion. Due to the absence of ¹H-¹H couplings during the evolution time in the ge-HSQC, this sequence will yield higher signals than the ge-HMQC. The modified ge-HSQC sequence can be used in studies to follow the incorporation of ¹³C lipid tracers.

References

1. Jonkers et al. MRM 2012. 2.Ruiz-Cabello et al. Journal of Magnetic Resonance, 1992. 3. Rothman et al., PNAS, 1985. 4. De Graaf et al. MRM (in press), 2014.

Acknowledgements

Funded by Top Institute Food and Nutrition (TIFN, WM003).

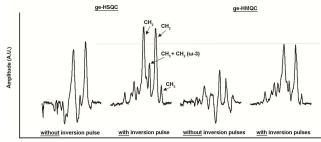


Figure 2. Comparison between the modified ge-HSQC and the modified ge-HMQC sequence, with and without additional ¹³C inversion pulse(s).