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Fig.1: Spiral CSI images at 0, 80 and 160 s

showing pyruvate and lactate in phantoms with 0
U (centre), 20 U (bottom) and 40 U (top) of LDH.

Introduction

Imaging the metabolism of endogenous hyperpolarized "*C-labelled molecules using Dynamic Nuclear
Polarization (DNP) has the potential to probe tissue biology non-invasively. The first clinical trial has recently
been undertaken in prostate cancer [1] and there are now a number of sites worldwide that are developing this for
human use. The most widely studied reaction to date is the conversion of [1—13C]pyruvate to [1-"C]lactate, which
in animal models has been shown to detect early treatment response and can be correlated with tumor grade [2,3].
There have been a number of methods used to quantify this exchange reaction. If it is to be used clinically, a
simple, informative and robust quantitative parameter is required to characterize the data from hyperpolarized
imaging. We assessed four quantitative methods using a clinical polarizer system at 3 T and an in vitro model
system with pyruvate concentration equivalent to the levels we anticipate in future patient studies. The aim was to
determine which quantitative parameters would be most appropriate to use with future clinical data. There has
been previous work using pre-clinical models, however we have applied these analysis methods to imaging data
on a clinical system in conjunction with a clinical hyperpolarizer and included one previously unpublished
analysis method.

Methods

Imaging phantoms were made by filling 15 ml Falcon tubes with 14 ml of 5x PBS containing NADH at 4.4 mM, (sufficient to ensure it is not rate limiting), and between
0 and 120 U of the enzyme L-lactate dehydrogenase (LDH). Non-sterile research fluid paths were filled with 100 ul of [1-"*C]pyruvic acid with 15 mM of trityl radical
(AH111501); 30 ml of water with 0.1 g/LL EDTA was used for dissolution. Samples were polarized in a SPINlab clinical hyperpolarizer (GE Healthcare) to an average
polarization of 21% before dissolution. The dissolution fluid was neutralized with NaOH to an average pH of 7.2 (range 6.7-7.4); 1 ml was added to each imaging
phantom to give a final pyruvate concentration of 4 mM in the phantom. Three phantoms were imaged simultaneously using an IDEAL spiral CSI imaging sequence
[4]: temporal resolution 4 s, in-plane spatial resolution 4 mm, FOV 8x8 cm, slice thickness 2 cm. Custom software was designed in Matlab® to analyze the data using
four quantitative methods: fitting for the rate constant ky using a two-way two-compartment kinetic model [2] with a statistical weighting towards lactate; the
lactate/pyruvate (L/P) ratio at peak lactate; the ratio of the L/P area under the curve (AUC) [5] and the time to peak (TTP) of the lactate signal. Each quantitative method
was tested for its correlation with enzyme concentration, robustness to artefacts and ease of implementation. R* values were used to assess the fit in each case, using a
Levenberg-Marquardt fitting algorithm. Each model-free analysis method was also checked for its correlation with theoretically predicted values calculated from the
kinetic model fitting results. To assess image homogeneity and distortion, pyruvate and lactate time courses for each phantom were extracted in two ways for
comparison: by thresholding and averaging over a region of interest (ROI) and by extracting from a pixel of interest (POI) containing the highest overall lactate signal.
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method appears no less robust in these homogeneous phantoms. In human tumors, analysis will be further
complicated by an arterial input function (see Table 1) and tumor heterogeneity but similar simple
approaches for PET analysis, such as the use of a maximum Standardized Uptake Value (SUVmax), have
proved to be very powerful as routine clinical tools. In conclusion, both the AUC ratio and TTP provided
excellent linear correlations with enzyme concentration, and are both simple and robust. In addition, the
AUC ratio is independent of inflow function making it an excellent approach as a clinical standard for the
analysis of hyperpolarized imaging data.
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