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INTRODUCTION The SAR usually defines the risk to patient safety due to the RF pulses. In a multiple transmit experiment, the final electrical field is the sum of the 
electrical fields produced by each transmit element, and thus, an error on the electrical field estimation is simply the sum of the error on each transmit element. The 
situation is more complex for the SAR due to its quadratic dependence with the electric field. The error propagation on the SAR due to an error on the estimation of the 
electrical field must be very carefully computed. This paper presents formulas to estimate the maximum SAR error according to some reasonable hypotheses. The 
results allow to compute easily margins on the SAR to ensure the safety of the patients without overconservative measures. 

METHODS The electrical field and its error are generally estimated by simulations and comparison with ܤଵmeasurements [1]. These measurements however do not 
allow to estimate the real electrical field maps, but can give an estimation of the error in the simulation. The difference between the simulated field maps and the true 
field maps is expected to be smooth since they both satisfy Maxwell’s equations. We will first only assume that the electrical field of channel ݅, called ܧ௜ has been 
estimated, with a random error ݁௜, without systematic bias (the expectation value is zero). If not, the simulated field maps can be rescaled to cancel the bias. The 
number of channel is ݊. If the input signal on channel ݅ is ݏ௜, the total electrical field at ݐ is simply given by ܧ ൌ ∑ ௜ܧሻሺݐ௜ሺݏ ൅ ݁௜ሻ௡ଵ  so that the error on the electrical 
field simply is ∑ ሻ݁௜௡ଵݐ௜ሺݏ  .  The average SAR in volume ܸ over time ߬ is given by: ܴܵܣ ൌ ଵ௏ఛ ׬ ׬ ఙଶఘ ԡ∑ ௜ܧ௜ሺݏ ൅ ݁௜ሻ௡௜ୀଵ ԡଶఛ଴௏  When developing the square of the  .ݒ݀ݐ݀

sum, we can verify that, even if the expectation value of ݁௜  is zero, the average error on the SAR is strictly positive. Consequently, on average, the SAR is 
underestimated.  

For the safety of the patient, we aim at estimating the probability for the maximum SAR, ܴܵܣ௠௔௫ to excess a given limit. For this purpose, it would be possible to 
compute Monte-Carlo simulations for every set of ݏ௜  waveforms, but it would require very long simulations, and if we aim at proposing one margin coefficient 
acceptable for every pulse, it can lead to overconservative measures. The other solution is to estimate the expectation value and the standard deviation of ܴܵܣ௠௔௫, and 
consider that, the probability to exceed a given limit depends on these parameters and on the distribution. For this purpose, it is necessary to determine an upper bound 
for both parameters. To calculate these upper bounds, we first assume that the errors across channels are not correlated, i.e. ܿݒ݋൫݁௜, ௝݁൯ ൌ 0 if ݅ ് ݆. The spatial 
correlation on the other hand, at least in small volumes, is high because the field maps are smooth [2]. The spatial correlation is assumed to be 1, i.e. the worst case 
scenario. The distribution of the error is assumed symmetrical: all odd moments are zero. The second moment (the variance) is supposed to be the same for every 
channel, every direction, and equal  to ߪ௘ଶ. If it is not the case, we can consider the worst ߪ௘ value and apply it to every field map. The fourth moment is denoted ߪߢ௘ସ, 
where ߢ depends on the distribution (ߢ ൌ 3 for a gaussian distribution). We will consider that the time-related shape of the RF waveform is the same for each channel ݅; 
if the shapes are different, the standard deviation is lower. With these assumptions, the expectation value of the error on the SAR,  ௌ݁஺ோതതതതതത, and its standard deviation are 

ௌ݁஺ோതതതതതത ൌ ଷ௏ఛ ׬ ఙଶఘ ௏ݒ݀ ڄ ൫׬ ∑ ௜ |ଶ௡௜ୀଵݏ| ఛ଴ݐ݀ ൯ߪ௘ଶ and ܵ݀ݐሺ ௌ݁஺ோሻ ൌ ଵ௏ఛ ׬ ఙఘ ׬ ට∑ ∑ หݏ௜൫∑ ௝௞௡௞ୀଵܧ௞ݏ ൯څหଶ௝ୀሼ௫,௬,௭ሽ௜ୀଵ.௡ ൅ ଷଶ ሺ|∑ ௜|ଶ௜ୀଵ.௡ݏ| |ଶ ൅ ሺߢ െ 1ሻ ∑ ௜|ସ௜ୀଵ.௡ݏ| ሻߪ௘ଶఛ଴௏ ڄ  .ݒ݀ݐ௘݀ߪ
The risk is defined by the maximum SAR (ܴܵܣ௠௔௫).  Without knowing the location of the worst case scenario, the solution proposed is to consider a number of 
uncorrelated points (e.g. local SAR maxima). Among these points, we can then ignore the ones whose difference with the simulated ܴܵܣ௠௔௫  is higher than 0.1 ൈܵ݀ݐሺ ௌ݁஺ோሻ : their contribution to ௌ݁஺ோ௠௔௫തതതതതതതതതത  is lower than 1%. If ݎ  is the number of remaining points, the difference ௌ݁஺ோ௠௔௫തതതതതതതതതത െ max ሺ ௌ݁஺ோതതതതതതሻ  cannot exceed ܥ௥ ڄ max൫ܵ݀ݐሺ ௌ݁஺ோሻ൯, where ܥ௥ ൌ ݎ ׬ ௫√ଶగ ݁ିభమ௫మ ቀଵଶ ൅ ଵଶ ݂ݎ݁ ቀ ௫ √ଶቁቁ௥ିଵ ஶିஶݔ݀ . For instance, when ݎ ൌ 2 then ܥ௥ ൌ 0.56. The coefficient ܥ௥ does not dramatically increase 

when ݎ increases, e.g. ܥଶ଴ ൌ 1.87. Consequently, the estimation of ݎ has not to be very accurate. Finally, it can be demonstrated that the variance of ௌ݁஺ோ௠௔௫ is slightly 
lower than the maximum variance of ௌ݁஺ோ. At this point, we have an equation and upper bounds of  ௌ݁஺ோ௠௔௫തതതതതതതതതത and ܵ݀ݐሺ ௌ݁஺ோ௠௔௫ሻ but it is almost impossible to apply it 
quickly to given field maps and pulses. In practice, ܳ matrices and VOPs [3] have been proposed to estimate the maximum SAR very quickly. Consequently, we derive 
a new local matrix ܳ௘ which takes into account the error ݁௜ , to ensure the maximum 
safety without overconservative measures. Considering that the error on the electrical 
field ߪ௘ is significantly lower than the maximum electrical field, the distribution of error 
for ܴܵܣ௠௔௫  is described by ܵ݀ݐሺ ௌ݁஺ோ௠௔௫ሻ ؄ ଵ௏ఛ ׬ ఙఘ ׬ ට∑ ∑ หݏ௜൫∑ ௝௞௡௞ୀଵܧ௞ݏ ൯څหଶ௝ୀሼ௫,௬,௭ሽ௜ୀଵ.௡ఛ଴௏ ڄ ݒ݀ݐ௘݀ߪ , and ௌ݁஺ோ௠௔௫തതതതതതതതതത ൑ ௥ܥ ڄ ሺ݀ݐܵ ௌ݁஺ோ௠௔௫ሻ. Moreover, the analysis of the standard deviation shows 

that ܵ݀ݐሺ ௌ݁஺ோ௠௔௫ሻ ൑ ଵ௏ఛ ׬ ఙሺ௫ሻఘሺ௫ሻ ׬ ܵᇱܭ௘ܵఛ଴ ௏ݒ݀ݐ݀ , where ܵ  represents the column matrix 

associated to the RF waveform and ሾܭ௘ሿ௜௝ ൌ √ଶଶ ൫ԡܧ௜ԡ ൅ ฮܧ௝ฮ൯ߪ௘. Now, considering that 

the probability to exceed ݇ times the standard deviation is very unlikely (typically 0.1% 
of probability to exceed 3 times the standard deviation for a Gaussian distribution), the 

error Δܴܵܣ௠௔௫  in the entire sample verifies: Δܴܵܣ௠௔௫ ൑ ଵ௏ఛ ׬ ఙሺ௫ሻఘሺ௫ሻ ׬ ܵԢܳ௘ܵఛ଴ ௏ݒ݀ݐ݀ , 

where ܳ௘ ൌ ሺ݇ ൅ ௥ሻܥ ڄ  ௘. Finally, for a given ݇, and thus, for a given probability, thereܭ
can exist a less conservative margin, but ܳ௘ is close to it, and really easier to compute. 

As a numerical test, we simulated the electrical field in a head with the HFSS software. The volume of interest ܸ here is a 10g volume. The ܳ and ܳ௘ matrices were 
measured for each point, in order to estimate the SAR and the margin everywhere in the head. A set of signal ݏ௜ was determined to maximize the electrical field at the 
centre. The parameter ݎ was set equal to 2, and ݇ ൌ 3. The probability to excess ܳ ൅ ܳ௘ for these values is lower than 0.1 %. ߪ௘ is defined as 15% of the average 
electrical field. 

RESULTS Fig. 1 shows ܴܵܣ௠௔௫ before and after applying ܳ௘. According to the calculations and based on the assumptions presented above, the margin on ܴܵܣ௠௔௫ to 
ensure the safety of the patient, with a probability of 99.9%, is 22% higher than the result with ܳ. 

DISCUSSION AND CONCLUSION Starting from the variances of the electric field uncertainties of the respective channels, estimating the expectation value and 
variance of the error on the maximum SAR is complex in the general case. However, we have shown that it is possible in practice to propose a reasonable 
overestimation of these parameters via the use of additional ܳ௘ matrices, which can later on be combined with the construction of virtual observation points [3]. 
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Figure 1: Average SAR before (left) and after (right) applying the correction ܳ௘.
The standard deviation of the error is 15% of the average electrical field. Central 
sagittal slice of the head, arbitrary unit, same scale for both images. The
maximum SAR is worth 2912 before applying ܳ௘ and 3562 after. 
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