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Fig 1 Relative error of estimate M0s: (a) on the possible distribution of parameters (b) while the 
number of samples reduced 
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Table 2 Optimal sampling schedule for PARACEST agent 

Lower 

bounds 

Upper 

bounds 

Number of 

samples 

-50ppm -10ppm 0 

-10ppm 0ppm 13 

0ppm 10ppm 22 

10ppm 50ppm 0 

50ppm 60ppm 36 

60ppm 70ppm 10 

70ppm 100ppm 0 
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Introduction: Generally, sampling schedule for CEST imaging is to acquire the whole investigated frequency offsets with even distribution, which is called evenly 

distributed sampling schedule (EDS). This sampling schedule has been proved to be inefficient because some data collected are minimally informative. An optimal 

sampling schedule (OSS) had been proposed by Y. K. Tee et al. for DIACEST agents[1]. For the PARACEST agents, the chemical shifts of exchange protons are far 

away from water resonance, which makes the use of OSS very appealing. In this study simulations were conducted to validate the performance of OSS on PARACEST 

agents. 

Methods: A two-pool chemical exchange model was set up considering: a free water pool (pool w) and a PARACEST agent pool (pool s). The PARACEST agent used 

in this simulation was based on Ref.[2], where the chemical shift is 56 ppm. The chemical exchange rate from pool s to pool w was denoted by Ksw, and the initial 

magnetization of pool w and pool s in z-direction were given by M0w and M0s. The prior information of Ksw and M0s was described by Gaussian distributions cut off by 

upper bounds and lower bounds as shown in Table 1. Other parameters were treated as constant and used representative values in Ref.[2]. 100,000 random values of Ksw 

and M0s were generated according to their prior distribution. Sensitivity functions[1] were calculated for each pair of random model parameters Ksw and M0s, and then 

were averaged to get average sensitivity curves. Instead of averaging OSS for all possible model parameters, a simpler algorithm was applied, i.e. the ultimate OSS was 

directly calculated by finding the maximum value of Hessian matrix[1] associated with average sensitivity curves. 

Simulations were performed on the distribution of parameter values to evaluate the performance of OSS. ln(Ksw) 

was varied from 5.2 to 9.2 with 10 values, M0s was varied from 0.01 to 0.06 with 10 values. For each pair of 

model parameter, 1000 noisy z-spectra were produced by adding white Gaussian noise with standard deviation 

equaled to 0.01 of M0w. In all, 100,000 noisy z-spectra sampled by EDS and OSS (81 samples) were fed into 

least square curve fitting function built in MATLAB R2012a to estimate Ksw and M0s. The performance of OSS 

and EDS were evaluated by relative errors between the estimation results and the true values of parameters. In 

order to examine the performance of both sampling schedules with respect to the number of samples, OSS were 

calculated by varying the number of samples from 150 to 10 with a step of 5. Ksw was set to be 1400 and M0s was 

set to be 0.05. 

Results&Discussion: The obtained OSS with 81 samples for 

PARACEST is shown in Table 2. OSS acquires more 

samples around the offset (56ppm) of the PARACEST agent. 

Fig 1a shows the relative errors of M0s acquired using OSS 

scheme for different exchange rates (Ksw) and concentrations 

(M0s). It can be seen that the relative errors by OSS method 

is strongly affected by Ksw. Generally, higher precision is 

achieved for the exchange rate of 700 to 104 and 

concentration of 0.03 to 0.05. Simulation illustrated that OSS 

had better performance almost on the whole distribution of 

Ksw and M0s compared to EDS. Fig 1b shows the 

performance of both sampling schedules while the number of 

samples decreased from 150 to 10. Results show that the 

relative errors is relatively small (when the number of 

samples is in the range: 150 to 80). As the number of 

samples continues to decrease, the relative error increased much more rapidly, particularly when 

sample number is lower than 50. The relative errors acquired by OSS are still far less than EDS method 

in the low sample number range. 

Conclusion: In this study, an optimal sampling schedule was proposed and verified for better two-pool 

PARACEST quantification. A connection was found between the performance of OSS and the 

distribution of true values of model parameters. The new method is able to provide more accurate 

parameters comparing to EDS scheme in the same experimental time. Simulation shows that the 

number of samples should be kept above 50 to assure adequate precision. 
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Table 1 Prior distribution of model parameters 

parameter Lower 
bound 

Upper 
bound 

mean Standard 
deviation 

M0s 0 0.06 0.03 0.01 

lnKsw 5.2 9.2 7.2 1.0 
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