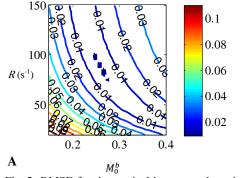

Cross-relaxation parameter quantification in cortical bone from repeated binomial excitations


Khaoula Bouazizi-Verdier¹ and Geneviève Guillot¹ ¹IR4M, UMR8081, CNRS, Univ. Paris-Sud, Orsay, France

<u>Purpose:</u> Evidence of magnetization transfer (MT) was recently shown in cortical bone between collagen-bound water protons and collagen methylene protons¹. A quantitative assessment of cross-relaxation parameters is of interest considering the observation of Horch et al.² that the amount of collagen-bound water protons (M_0^b) was related to cortical bone mechanical properties. The cross-relaxation parameters were quantified using off-resonance saturation³. However, this approach is limited by the high Specific Absorption Rate and the long acquisition time. The purpose of this work was to quantify the cross-relaxation parameters in cortical bone using a scheme easily integrated in an imaging sequence.

Materials and Methods: Femoral bovine cortical bone was obtained from local butcher, 11 transverse sections were cut from the diaphysis over approximately 10 mm thickness. Experiments were run on a home-assembled 4.7 T scanner. Inversion-recovery (IR) was used to follow longitudinal relaxation with 31 inversion times using two pulse widths (pw): $10 \,\mu s$ (TE = $55 \,\mu s$) and $100 \,\mu s$ (TE = $100 \,\mu s$), and CPMG to follow transverse relaxation with TE = $0.75 \,m$ s at both pw. A third order selective binomial excitation was implemented to saturate the longitudinal magnetization of protons with a specific T₂ called T_{2sel} with a minor perturbation of the long-T₂ proton magnetization. To attain a steady state, the binomial excitation was repeated after a delay (11.2 ms) and for a determined number of excitations (Nbin = 100-1500). A hard 90° RF pulse followed by a $100 \,\mu s$ dead time was applied to measure M_z²; M₀^a was similarly measured after TR = $15 \, s$. Experiments were simulated with a matrix approach⁵ for a two-pool model using the usual cross-relaxation parameters⁶ with home-developed software written in Matlab (MathWorks, Natick, MA).

Results: At pw = 10 µs, IR data could be described as a monoexponential decay, whereas at pw = 100 µs, the IR data were compatible with a biexponential decay. This behavior was comparable for all examined samples. A biexponential decay for the long pw experiment is in agreement with two characteristic times⁷ describing the return to equilibrium of M_z^a with the two-pool model. Data at both pw could be reproduced by simulation of the two-pool model. The model parameters were initialized as follows: $T_1^a = T_1^b = \text{time of the monoexponential fit of IR data at pw = 10 µs, <math>T_2^a = T_2^*$, then T_2^b , R and M_0^b were searched to minimize the Root Mean Square Error (RMSE) between simulation and experimental data. CPMG data were analyzed as a decreasing tri-exponential function and were not sensitive to MT. Indeed the mean fast T_2 component was equal to 0.466 ms (±0.07 ms) at pw = 10 µs and to 0.488 ms (±0.1 ms) at pw = 100 µs, with similar relative fraction (≈ 90%). To simulate the repeated binomial experiment, T_1^a was initialized from IR monoexponential decay at pw = 10 µs and T_1^b was set = T_1^a . Four parameters (T_2^a , T_2^b , M_0^b and R) were set to minimize RMSE between experiments and simulations. The saturation data in cortical bone samples were systematically much lower than the one-pool simulation (Fig. 1), and the two-pool model with $T_1^a = T_1^b = 0.4$ s, $T_2^a = 1.9$ ms, $T_2^b = 13$ µs, $M_0^b = 0.24$, R = 72 s⁻¹ was in a fair agreement with data. Increasing T_{2sel} caused a decrease of M_2^a/M_0^a mainly due to direct saturation. Therefore the largest difference between the one-pool simulation and the data could be found for the shortest T_{2sel} (9 µs) which was also the closest value to T_2^b . Fig. 2A shows as iso-contour lines RMSE between data of Fig. 1 and simulations for different M_0^b and R values, on a two-pool system. All iso-contour lines tended to be vertical for R > 100 s⁻¹ therefore R > 100 s⁻¹ cannot be accurately predicted.

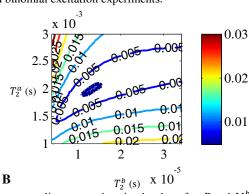


Fig. 1: Saturation in a cortical bone sample (symbols), one-pool simulation (dotted lines) and two-pool simulation (lines)

Fig. 2: RMSE for the cortical bone sample as iso-contour lines around optimal values for R and M_0^b (A) and T_2^a and T_2^b (B) minimizing RMSE (RMSE_{min}= 0.002)

Table 1: Cross-relaxation parameters (mean±std.) of the 11 investigated cortical bone samples from IR and repeated binomial excitation experiments

	$T_1^a = T_1^b$ (s)	T_2^a (ms)	T_2^b (µs)	M_0^b (%)	$\mathbf{R}(s^{-1})$
Inversion-Recovery	0.40±0.01	0.20±0.02	11±0.36	50±4	155±19
Repeated binomial excitation	0.40 ± 0.01	1.86 ± 0.31	14±3	25±5	89±39

<u>Discussion and Conclusion:</u> T_1^a from IR data was close to 0.4 s in agreement with literature¹ and T_2^b deduced from both experiments were comparable. M_0^b could not be precisely determined from the IR data. Indeed, as 180° excitation was not repeated, M_z^a was less perturbed by M_z^b . M_0^b from repeated binomial excitation simulation was in agreement with past findings¹. The optimal T_2^a from repeated binomial excitation being longer than the fast T_2 from CPMG is tentatively attributed to susceptibility inhomogeneities. IR can be used to detect MT (large M_0^b and short T_2^b). However to quantify cross-relaxation parameters, a repeated binomial excitation can be easily integrated into a UTE sequence and should be used.

References: 1. Horch RA et al. Magn Reson Med 2010;64:680-687. 2. Horch RA et al. PLoS ONE 2011;6:e163592011. 3. Bouazizi-Verdier K and Guillot G. In: Proceedings of the ISMRM, 2014 (#3995). 4. Pachot-Clouard M and Darrasse L. Magn Reson Med 1995;34:462–469. 5. Müller DK et al. J Magn Reson 2013;230:88–97. 6. Henkelman RM et al. Magn Reson Med 1993;29:759–766. 7. Edzes HT and Samulski ET. J Magn Reson 1978;31:207–229.