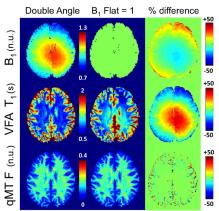
B₁-Sensitivity Analysis of qMT


Mathieu Boudreau¹, Nikola Stikov¹, and G. Bruce Pike²

¹McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, ²Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

INTRODUCTION: B_1 mapping is an important measurement used in quantitative magnetization transfer (qMT) imaging, particularly at high field strengths (≥ 3.0 T) where B_1 can vary by $\pm 30\%$ in a human brain (Fig. 1). For pulsed spoiled gradient echo (SPGR) qMT imaging experiments, B_1 maps are used as a corrective factor for the excitation flip angle (\sim 5° to 15°) and MT saturation power (flip angles \sim 150° to 700°). Additional measurements necessary for qMT (e.g. T_1 mapping) may also require B_1 maps as a corrective factor; variable flip angle (VFA) T_1 mapping requires B_1 maps, while inversion recovery (IR) or Look-Locker typically do not 1 . Thus, local (e.g. artifacts) or global (e.g. systemic biases) inaccuracies in B_1 mapping 2 will propagate to the fitted qMT parameters differently, depending on the chosen T_1 mapping method.

We recently reported that the qMT pool-size ratio (F), an important myelin biomarker, is insensitive to a large range of B_1 inaccuracies when using VFA for T_1 mapping³ (Fig. 1). Here we present a simulation-based analysis of the B_1 sensitivity of qMT, comparing how different T_1 mapping methods (VFA vs. IR) propagate the B_1 error to the qMT parameters. We show that the F parameter is very robust and insensitive to B_1 inaccuracies when VFA T_1 mapping is used, but this comes at the expense of a substantial increase in error of kf.

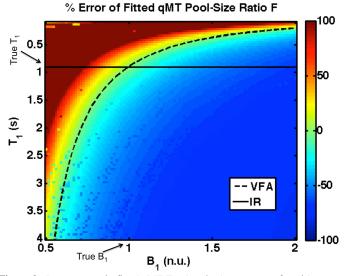

METHODS: The Bloch-McConnell equations for magnetization exchange were solved using MATLAB (MATLAB2011a, The Mathworks Inc.) for a pulsed SPGR experiment by decomposing the pulse sequence into periods of instantaneous saturation of the free pool, constant irradiation of the restricted pool, and free precession⁴. Healthy white matter tissue parameters were fixed to the following values: F = 0.122, kf = 0.122

Figure 1. Comparison of VFA T_1 and qMT F maps using measured and nominal (B_1 flat = 1) B_1 maps at $3T^3$.

precession . Healthy white matter tissue parameters were fixed to the following values: F = 0.122, KT = -27 mag and KT = -27 mag. KT =

RESULTS: Figure 2 shows the error (%) of the fitted qMT pool-size ratio, F, in the presence of a wide range of B_1 and T_1 inaccuracies ($B_{1,true} = 1$, $T_{1,true} = 0.9$ s). The superimposed lines show the range of errors expected from an experiment using a B_1 independent T_1 method like IR (solid line), and from VFA T_1 mapping (dashed line). Figure 3 plots the errors in qMT fitted parameters (F, kf, T2f, T2r) using B_1 -independent (IR) and VFA measured T_1 (see lines in Fig. 2), for a range of B_1 inaccuracies typically observed in vivo. Errors in F induced by B_1 errors were greatly reduced using VFA T_1 mapping (Fig. 3a). A substantial increase in errors in kf occurs for VFA relative to IR (Fig. 3b), while T2r remains insensitive to B_1 inaccuracies for both cases.

Figure 2. Percent error in fitted qMT F values in the presence of a wide range of B_1 and T_1 errors ($B_{1,true} = 1$ n.u., $T_{1,true} = 0.9$ s). The superimposed lines plot the T_1 distribution for a B_1 -independent T_1 mapping method (IR, solid line) and VFA (dashed line).

Figure 3. Percent error in fitted qMT parameters for a range of B_1 errors (\mathbf{a} – pool size ratio (F), \mathbf{b} – magnetization exchange rate (kf), \mathbf{c} – free pool T2 (T2f), \mathbf{d} – restricted pool T2 (T2r)). Fits using a B_1 -independent T_1 measure (IR) are shown in red, and those using VFA T_1 mapping are shown in blue. See solid and dashed lines in Fig. 2 for B_1 dependence of IR and VFA T_1 .

DISCUSSION: The qMT pool size ratio F was shown to be nearly B_1 -error insensitive when using VFA T_1 mapping (Fig. 3a - blue). Using a B_1 -independent T_1 measure such as IR produces large qMT F errors (from >100% to -45% for B_1 errors ranging from -30% to 30%, Fig 3a - red), while VFA T_1 mapping kept qMT F errors within a moderate range (7% to -3%, Fig. 3a - blue). The B_1 errors for the case of VFA were mostly absorbed by the kf parameters (Fig. 3b), in agreement with observations from previous in vivo work³. These results suggest that qMT imaging using B_1 -independent T_1 measurement, and qMT methods that fixes qMT model parameters, may have increased sensitivity to B_1 -inaccuracies. However, for applications where kf may be the biomarker of interest (e.g. cartilage imaging⁶, systemic inflammation⁷), a B_1 -independent measure of T_1 may be preferred instead of the VFA method. Further analytical sensitivity analysis of the qMT equations for different qMT measurement protocols could help determine optimal qMT protocols for reduced B_1 -inaccuracy sensitivity. **REFERENCES:** [1] Stikov, n. et al, MRM, doi: 10.1002/mrm.25135 (2014) [2] Boudreau, M. et al, Proc. of ISMRM, #3207 (2014) [3] Boudreau, M. et al, Proc. of

REFERENCES: [1] Stikov, n. et al, MRM, doi: 10.1002/mrm.25135 (2014) [2] Boudreau, M. et al, Proc. of ISMRM, #3207 (2014) [3] Boudreau, M. et al, Proc. of ISMRM, #3167 (2014) [4] Sled J. and Pike G. B., JMR, 145:24-36 (2000) [5] Sled J. and Pike G. B., MRM, 46:923-931 (2001) [6] Stikov, N. et al, MRM, 66:725-734 (2011) [7] Harrison, N. et al, Biological Psychiatry, DOI: 10.1016/j.biopsych.2014.09.023 (2014)