

# Measurement of Brain Iron and Calcium using MR QSM and CT: validation using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

Jingwei Zhang<sup>1,2</sup>, Cynthia Wisniewi<sup>1,2</sup>, Becky Schur<sup>3</sup>, Lu Zhengrong<sup>3</sup>, David Pitt<sup>4</sup>, and Yi Wang<sup>1,2</sup>

<sup>1</sup>Biomedical Engineering, Cornell University, New York, New York, United States, <sup>2</sup>Radiology, Weill Cornell Medical College, New York, New York, United States,

<sup>3</sup>Biomolecular Engineering, Case Western Reserve University, Ohio, United States, <sup>4</sup>Neurology, Yale School of Medicine, CT, United States

**Target Audience:** Researchers and clinicians interested in quantitative susceptibility mapping, brain iron and calcium quantification.

**Purpose:** Hemorrhage and calcification are common pathologic components of many intracranial diseases such as tumor and hemorrhage. Iron products such as met-heme, hemosiderin, and ferritin are strongly paramagnetic with molar susceptibility of  $176 \times 10^{-9} \text{ cm}^3/\mu\text{mol}$ <sup>1</sup>. On the other hand, calcification in the form hydroxyapatite (HA, ~40% calcium by mass) is diamagnetic with molar susceptibility of  $-2.7 \times 10^{-9} \text{ cm}^3/\mu\text{mol}$ <sup>1</sup>. When both are presence in a pathological site in an unknown proportion, iron concentration maps derived from QSM alone can be underestimating. This study aims at demonstrating the feasibility of correcting calcium susceptibility for more accurate  $[\text{Fe}]$  maps utilizing both QSM and CT images in brain specimens. The results are compared with ICP-OES results as the golden standard.

**Methods:** Assuming the presence of iron and calcium were in the form of ferritin and HA respectively, voxel susceptibility measured in QSM can be expressed as

$$QSM = [\text{Fe}] \chi_{\text{Fe},\text{mol}} + [\text{HA}] \chi_{\text{HA},\text{mol}} \quad (\text{Eq.1})$$

Here  $[\text{Fe}]$ ,  $\chi_{\text{Fe},\text{mol}}$ , and  $[\text{HA}]$ ,  $\chi_{\text{HA},\text{mol}}$  are molar concentration and molar susceptibility of ferritin and HA respectively.  $[\text{HA}]$  can be calculated from CT images according to the definition of Hounsfield unit assuming the attenuation of ferritin is negligible:

$$[\text{HA}] = \rho_{\text{HA}} \frac{\mu_x - \mu_b}{\mu_{\text{HA}} - \mu_b} \text{ with } \mu_x = \frac{HU \cdot \mu_{\text{water}}}{1000} + \mu_{\text{water}} \quad (\text{Eq.2})$$

Here  $HU$  is hounsfield units measured in CT images.  $\mu_x$ ,  $\mu_{\text{water}}$ ,  $\mu_{\text{HA}}$ , and  $\mu_b$  are attenuation coefficient of tissue, water, HA, and background (tissue surrounding calcifications) respectively.  $\rho_{\text{HA}}$  is the density of HA.

Substituting Eq.2 into Eq.1,  $[\text{Fe}]$  maps with calcium correction can be calculated.

Three brain specimens with calcified tumor, choroid plexus, and pineal gland were prepared for MR (HDxt, GE Healthcare, 8-channel head coil) and CT (Discovery CT750, GE Healthcare) scans. The MRI protocol included a 3D spoiled gradient echo sequence with following parameters: 4 equally spaced echos with TE between 7.4 and 50.7 ms, TR 59.7ms, voxel size  $0.32 \times 0.32 \times 0.4$  mm. The CT scanning parameters were as followed: peak tube voltage 140kV, tube current 210mA, voxel size  $0.32 \times 0.32 \times 0.625$  mm. QSMs were generated using the Morphology Enabled Dipole Inversion (MEDI) algorithm<sup>2</sup>. CT images were co-registered and interpolated to the resolution of QSM using FSL FLIRT.  $[\text{HA}]$  and  $[\text{Fe}]$  maps were calculated using Eq. 1 and 2. To analyze potential error due to co-registration and inaccuracy ROIs, ROIs were shifted 1mm in all 6 x, y, z directions. Measurements were reported in mean  $\pm$  stds. ICP-OES was performed on the specimens for  $[\text{Fe}]$  as the golden standard.

**Results:** Figure 1 shows tumor  $[\text{Ca}]$  map calculated from CT and  $[\text{Fe}]$  maps with/without correction for calcium. Large increase in  $[\text{Fe}]$  can be appreciated after the correction. Figure 2 compares the total iron mass ( $\mu\text{g}$ ) in the specimens calculated from QSM / CT images and measured using ICP-OES. Means and stds were calculated from shifted ROIs. The relative difference to ICP-OES results is significantly lower with calcium correction than without ( $21 \pm 5\%$  vs  $88 \pm 26\%$ , t-test,  $p < 0.05$ ).

**Discussion:** Our preliminary results demonstrate that calcium can contribute significantly to susceptibility measured in QSM and need to be corrected for accurate mapping of

$[\text{Fe}]$  derived from QSM. While ICP-OES and calculated results agree reasonably well in choroid plexus and pineal gland specimens, there is a larger disagreement in the tumor sample. This can due to the complex chemical make-up of tumor and require further investigation.

**Conclusion:** Calcium can contribute significantly to susceptibility measured in QSM and need to be corrected for accurate mapping of  $[\text{Fe}]$  derived from QSM.

**Reference:** 1). Wang Y. QSM : MRI of Tissue Magnetism, Jun 2013. 2). Liu T. MRM, 2011;66(3):777-783.

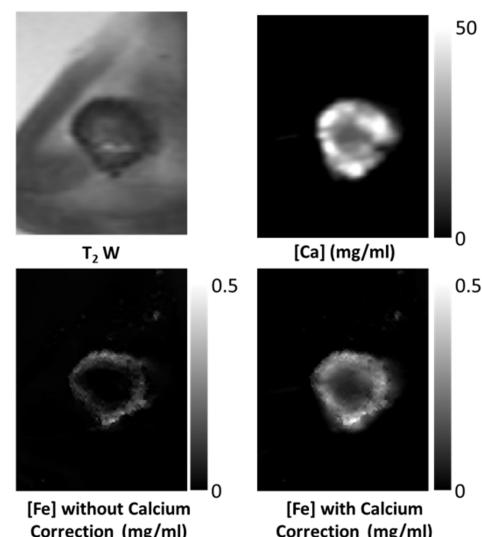



Figure 1: T2w,  $[\text{Ca}]$ ,  $[\text{Fe}]$  maps with/without correction for Calcium.

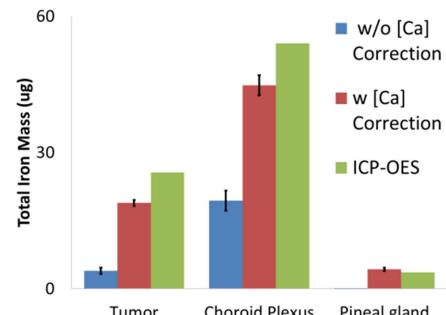



Figure 2: The total iron mass ( $\mu\text{g}$ ) in the specimens calculated from QSM / CT images with / without correction for calcium and measurements from ICP-OES. Stds shows the potential errors of co-registration and ROI accuracy.