

Optimizing and Comparing the Efficiencies of Relaxometry Sequences in Quantitative T1 and T2 Imaging

Yang Liu¹, John R. Buck¹, Shaokuan Zheng², and Vasiliki N. Ikonomidou³

¹Electrical and Computer Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, United States, ²Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States, ³Bioengineering, George Mason University, Fairfax, VA, United States

Target Audience: Researchers and clinicians interested in quantitative MRI relaxometry sequences design

Purpose: Quantitative MRI estimates pixel-wise maps of MR quantities such as T_1 and T_2 . These quantitative MR maps prove clinically useful in neurodegenerative pathology evaluations as well as brain anatomy and functional studies. Perturbation based sequences such as inversion recovery (IR)^{1,2}, saturation recovery (SR)³ and Look-Locker (LL)⁴ quantify T_1 information. Joint T_1/T_2 relaxometry sequences such as spin-echo inversion-recovery (SEIR)⁵ and Driven Equilibrium Single Pulse Observation of T_1/T_2 (DESPOT)⁶ simultaneously estimate T_1 and T_2 . Estimating T_1/T_2 precisely (low variance) and accurately (low bias - difference between T_1/T_2 estimates and the true T_1/T_2) in a relatively short scan time is very desirable in this context. Although there is extensive relaxometry protocol design research for quantitative MRI, little effort has been made to explore and quantify the complete factors controlling the T_1/T_2 estimation efficiencies. This paper establishes a statistical framework to evaluate and compare different relaxometry sequences based on their T_1/T_2 estimation characteristics. This framework considers relaxometry protocols as estimation algorithms and proposes two new metrics: T_1/T_2 -to-noise ratio (TNR) to characterize T_1/T_2 estimates' precisions and TNR efficiency to measure T_1/T_2 estimates' precision per unit time. The TNR and its efficiency are defined in terms of the Cramer-Rao Bound (CRB)⁷, a statistical lower bound on the parameter estimate variance. This framework predicts the T_1/T_2 mapping performances of any relaxometry approaches before phantom or *in vivo* experiments.

Methods: The CRB, calculated as the inverse of Fisher information matrix (FIM), sets a lower bound on the variance of any unbiased parameter estimates for a given signal model. The FIM quantifies the signals' sensitivities to changes of $\theta = [M_0, T_1, T_2]$ in noisy measurements⁷. Assuming white Gaussian noise and complete knowledge of B_0 and B_1 inhomogeneity, Eq. 1 establishes a common CRB expression on T_1/T_2 estimations for any relaxometry approach. There are three components in the CRB expression: the SNR in Eq. 1b, the sensitivity of the signal vector \mathbf{s} to T_1/T_2 (Sens in Eq. 1c) and the orthogonality between the signal vector \mathbf{s} and the sensitivity vectors (Orth in Eq. 1d). The TNR in Eq. 2 describes a ratio between the true T_1/T_2 over the square root of the CRB and predicts the precisions of T_1 and T_2 estimates. The $\sqrt{T_{\text{scan}}/T_{\text{seq}}}$ factor represents the TNR improvement due to signal averaging in total scan time T_{scan} when each T_1/T_2 estimate requires T_{seq} . The TNR efficiency Γ follows from Eq. 2 by setting the T_{scan} term to unity and replacing CRB with Eq. 1a. Eq. 3 reveals that the TNR efficiency depends linearly on the input SNR and the signals' sensitivity, both of which were often incorporated in prior sequence design research^{6,8,9} studying MR parameter mapping efficiencies. However, no prior work recognized that improving the orthogonality between the signal vector \mathbf{s} and the sensitivity vectors equally improves the T_1/T_2 estimate efficiency. This paper evaluates and compares the TNR efficiencies of the conventional IR¹, fast IR², SR³ and LL⁴ sequences for T_1 relaxometry, and the SEIR and DESPOT sequences for joint T_1/T_2 relaxometry. All sequence parameters were chosen to optimize the TNR efficiencies following a max-min criterion (Eq. 4) to guarantee the overall optimality of sequence parameters within the T_1 and T_2 ranges of interest. A reference range of $T_1 = [1000, 2000]$ ms and $T_2 = [60, 110]$ ms characterizes brain white matter (WM) and grey matter (GM)¹⁰. All sequence optimizations were implemented using the MATLAB2012a Optimization Toolbox 'fmincon'.

$$\text{CRB}(T) = (\text{SNR} \cdot \text{Sens} \cdot \text{Orth})^{-2} \quad \text{Eq. 1a}; \quad \text{SNR} = M_0/\sigma \quad \text{Eq. 1b}; \quad \text{Sens} = \begin{cases} \|\partial \mathbf{s} / \partial T_1\|, & \text{for } T_1 \text{ relaxometry} \\ \|\partial \mathbf{s} / \partial T_2\|, & \text{for } T_1/T_2 \text{ relaxometry} \end{cases} \quad \text{Eq. 1c};$$

$$\text{Orth} = \begin{cases} \sin \phi_1 & \text{for } T_1 \text{ relaxometry} \\ \sqrt{1 + 2 \sum_{i=1}^3 \cos \phi_i - \sum_{i=1}^3 \cos^2 \phi_i} / \sin \phi_{3-j} & \text{for } T_1/T_2 \text{ relaxometry} \end{cases}, \text{with} \begin{cases} \cos \phi_1 = \langle \mathbf{h}, \partial \mathbf{h} / \partial T_1 \rangle \\ \cos \phi_2 = \langle \mathbf{h}, \partial \mathbf{h} / \partial T_2 \rangle \\ \cos \phi_3 = \langle \partial \mathbf{h} / \partial T_1, \partial \mathbf{h} / \partial T_2 \rangle \end{cases} \quad \text{Eq. 1d};$$

$$\text{TNR} = T_{1,2} \cdot \text{CRB}^{-1/2} \cdot \sqrt{T_{\text{scan}}/T_{\text{seq}}} \quad \text{Eq. 2}; \quad \text{TNR efficiency } \Gamma_j = T_j \cdot \text{SNR} \cdot \text{Sens} \cdot \text{Orth} / \sqrt{T_{\text{seq}}}, \quad j = 1, 2 \quad \text{Eq. 3};$$

$$(\mathbf{t}, \alpha)^{\text{opt}} = \arg \max_{\mathbf{t}, \alpha} \min_{0_{\text{min}} \leq \alpha \leq 0_{\text{max}}} \rho_1 \Gamma_1 + (1 - \rho_1) \Gamma_2, \quad \text{for } 0 \leq \rho_1 \leq 1 \quad \text{Eq. 4};$$

Results: Table 1 shows the optimized sequence parameters, along with the average TNR efficiencies in the WM/GM region. To numerically verify the validity of the TNR efficiency metric, five thousand independent Monte Carlo trials were repeated for each T_1/T_2 pair assuming an expected value of $M_0 = 3000$. Nonlinear least square estimation (NLSE) estimated all T_1/T_2 values while including M_0 as a nuisance parameter. The Nelder-Mead simplex direct search method minimizes the squared error χ^2 between the simulated noisy and the noise-free data. Converting the TNR efficiency into PCRB (squared root of CRB over T_1/T_2) assuming a total scan time of 10 seconds for each relaxometry approach quantifies the predictions on T_1/T_2 estimates' precisions. The mean estimation error MEE = $\sigma(\hat{T}_{1,2})/T_{1,2}$ and the relative bias Rbias = $(E(\hat{T}_{1,2}) - T_{1,2})/T_{1,2}$ quantify the T_1/T_2 estimates' precisions and accuracies, respectively. Fig. 1a demonstrates the T_1 estimate MEEs (in dots) against the PCRBs (in dash lines) for $T_1 = [700, 5000]$ ms with reference $T_2 = 85$ ms. Fig. 1b demonstrates the T_2 estimate MEEs against the PCRBs for $T_2 = [30, 400]$ ms with reference $T_1 = 1500$ ms. The shaded regions correspond to the WM/GM. Including the larger T_1 and T_2 ranges examines the estimates' stabilities for diagnosing early brain tissue degenerations and also more advanced damage. Figs. 1c-d show that T_1 and T_2 are generally over-estimated, but the Rbias are controlled within [-0.1%, 0.2%] for brain WM/GM regions. The last three columns in Table 1 give the average PCRBs against the average MEEs and Rbias within the WM/GM T_1/T_2 ranges.

Table 1 Optimized sequence parameters and performances for different relaxometry approaches

Approach	Optimized parameters (ms)	TNR Efficiency	Equi. MC SNR	PCRB (%)	MC MEE (%)	MC Rbias (%)
Conv. IR	TI = [0:450:1800], W = 10000	$\Gamma_1 = 17.07$	42.84	$P_1 = 1.85$	$M_1 = 1.86$	$R_1 = 0.019$
Fast IR	TI = [0:303:2424], TR = 6722	$\Gamma_1 = 19.57$	40.66	$P_1 = 1.62$	$M_1 = 1.62$	$R_1 = 0.0005$
SR	TR = [0:620:6820]	$\Gamma_1 = 7.52$	49.43	$P_1 = 4.21$	$M_1 = 4.24$	$R_1 = 0.087$
LL	$a = 30^\circ$, $t = [206:206:3090]$, TR = 8900	$\Gamma_1 = 21.32$	105.99	$P_1 = 1.48$	$M_1 = 1.49$	$R_1 = 0.009$
SEIR	TR _{IR} = 2994, TI = 1270, TR _{SE} = 2942, TE = 17	$\Gamma_1 = 22.56, \Gamma_2 = 8.78$	117.80	$P_1 = 1.41, P_2 = 3.62$	$M_1 = 1.41, M_2 = 3.63$	$R_1 = 0.008, R_2 = 0.13$
DESPOT	$\alpha_{\text{SPGR}} = 8.6^\circ$, $\alpha_{\text{SSFP}} = [13.9^\circ, 57.8^\circ]$, TR _{SPGR} = 6.8, TR _{SSFP} = 3.4	$\Gamma_1 = 23.29, \Gamma_2 = 24.64$	2711.63	$P_1 = 1.36, P_2 = 1.28$	$M_1 = 1.37, M_2 = 1.28$	$R_1 = 0.012, R_2 = 0.01$

Discussion and Conclusion: Both Fig.1 and Table 1 show for all tested relaxometry approaches, the MEEs closely follow the CRB for all tested T_1 and T_2 ranges. This confirms that the CRB is a tight estimation bound and reliably predicts the T_1/T_2 estimation performances. Among all approaches, DESPOT has the highest T_1 and T_2 estimate efficiency largely due to its very short sequence time, but suffers from a relatively high Rbias and therefore low accuracy in T_1 mapping. SEIR, LL and fast IR have similar T_1 estimate efficiencies. Conventional IR requires a long sequence time and SR has very low T_1 estimate efficiency and therefore are both not recommended for T_1 mapping. This is the first time the CRB is utilized in defining the T_1 and T_2 mapping efficiencies, which provides a consistent and more complete framework evaluating different relaxometry approaches on their T_1 and T_2 mapping capabilities in quantitative MRI.

References: 1. Bydder et al. J Comput Assist Tomogr 9(4):659-75, 1985. 2. Gupta et al. JMR 38(3):447-452, 1980. 3. McDonald et al. JMR 9(3):358-362, 1973. 4. Look et al. Rev Sci Instrum 41(2):250-251, 1970. 5. In den Kleef et al. MRM 5(6): 513-524, 1987. 6. Deoni et al. MRM 49(3):515-526, 2003. 7. Kay. Englewood Cliffs, NJ: Prentice Hall, 1993. 8. Edelstein et al. J Comput Assist Tomogr 7:391-401, 1983. 9. Crawley et al. MRM 7(1):23-34, 1988. 10. Stanisz et al. MRM 34(3):507-512, 2005.

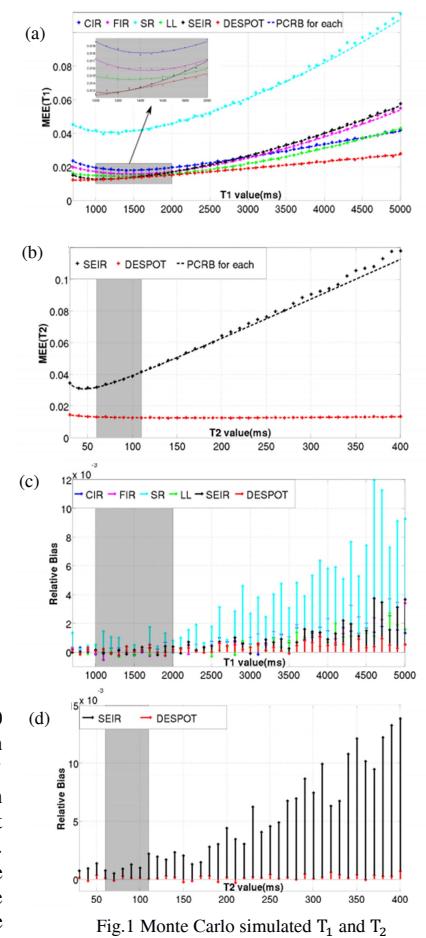


Fig.1 Monte Carlo simulated T_1 and T_2 Estimate precisions (a-b) and accuracies (c-d)