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Target Audience: Researchers and clinicians interested in quantitative MRI relaxometry sequences design
Purpose: Quantitative MRI estimates pixel-wise maps of MR quantities such as T; and T,. These quantitative MR maps prove clinically useful in neurodegenerative
pathology evaluations as well as brain anatomy and functional studies. Perturbation based sequences such as inversion recovery (IR)"?, saturation recovery (SR)* and
Look-Locker (LL)* quantify T, information. Joint T,/T, relaxometry sequences such as spin-echo inversion-recovery (SEIR)’ and Driven Equilibrium Single Pulse
Observation of T;/T, (DESPOT)® simultaneously estimate T; and T,. Estimating T,/T, precisely (low variance) and accurately (low bias - difference between T;/T,
estimates and the true T;/T,) in a relatively short scan time is very desirable in this context. Although there is extensive relaxometry protocol design research for
quantitative MRI, little effort has been made to explore and quantify the complete factors controlling the T, /T, estimation efficiencies. This paper establishes a statistical
framework to evaluate and compare different relaxometry sequences based on their T;/T, estimation characteristics. This framework considers relaxometry protocols as
estimation algorithms and proposes two new metrics: T,/T,-to-noise ratio (TNR) to characterize T,/T, estimates’ precisions and TNR efficiency to measure T,/T,
estimates’ precision per unit time. The TNR and its efficiency are defined in terms of the Cramer-Rao Bound (CRBY’, a statistical lower bound on the parameter
estimate variance. This framework predicts the T;/T, mapping performances of any relaxometry approaches before phantom or in vivo experiments.

Methods: The CRB, calculated as the inverse of Fisher information matrix (FIM), sets a lower bound on the variance of any unbiased parameter estimates for a given
signal model. The FIM quantifies the signals’ sensitivities to changes of @ = [M,, T;, T,] in noisy measurements’. Assuming white Gaussian noise and complete
knowledge of B, and B; inhomogeneity, Eq. 1 establishes a common CRB expression on T;/T, estimations for any
relaxometry approach. There are three components in the CRB expression: the SNR in Eq. 1b, the sensitivity of the  (a)
signal vector s to T;/T, (Sens in Eq. 1c) and the orthogonality between the signal vector s and the sensitivity
vectors (Orth in Eq. 1d). The TNR in Eq. 2 describes a ratio between the true T;/T, over the square root of the CRB
and predicts the precisions of T; and T, estimates. The ,/Tscan/Tseq factor represents the TNR improvement due to
signal averaging in total scan time Ty, when each T,/T, estimate requires Tseq. The TNR efficiency I' follows
from Eq. 2 by setting the Ts¢,, term to unity and replacing CRB with Eq. la. Eq. 3 reveals that the TNR efficiency
depends linearly on the input SNR and the signals’ sensitivity, both of which were often incorporated in prior
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sequence design research®’ studying MR parameter mapping efficiencies. However, no prior work recognized that 1000 —1600=20007=2500 8000 55004000 4500 500K
improving the orthogonality between the signal vector s and the sensitivity vectors equally improves the T,/T,
estimate efficiency. This paper evaluates and compares the TNR efficiencies of the conventional IR', fast IR?, SR’ ®)  Toeen - oespor ~ponsremn
and LL* sequences for T, relaxometry, and the SEIR and DESPOT sequences for joint T;/T, relaxometry. All o
sequence parameters were chosen to optimize the TNR efficiencies following a max-min criterion (Eq. 4) to 008 e
guarantee the overall optimality of sequence parameters within the T; and T, ranges of interest. A reference range Eoos /,—"""
of T, = [1000,2000] ms and T, = [60, 110] ms characterizes brain white matter (WM) and grey matter (GM)"’. gm .- =
All sequence optimizations were implemented using the MATLAB2012a Optimization Toolbox ‘fmincon’. e
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Results: Table 1 shows the optimized sequence parameters, along with the average TNR efficiencies in the i
WM/GM region. To numerically verify the validity of the TNR efficiency metric, five thousand independent 2 “H
Monte Carlo trials were repeated for each T;/T, pair assuming an expected value of M, = 3000. Nonlinear least 0.;,4“;;.},{};1.”1"!111!'i;t“hfH” |
square estimation (NLSE) estimated all T;/T, values while including M, as a nuisance parameter. The Nelder-Mead 100 1500 2000 2500 memmS 0 4000 4500 5000
simplex direct search method minimizes the squared error %? between the simulated noisy and the noise-free data. g0’

Converting the TNR efficiency into PCRB (squared root of CRB over T;/T,) assuming a total scan time of 10 (d) |—ser — oeseor
seconds for each relaxometry approach quantifies the predictions on T;/T, estimates’ precisions. The mean
estimation error MEE = G(TLZ) /Ty, and the relative bias Rbias = (E(TLZ) — Ty2)/Ti, quantify the T;/T, estimates’
precisions and accuracies, respectively. Fig. 1a demonstrates the T; estimate MEEs (in dots) against the PCRBs (in
dash lines) for T; = [700,5000] ms with reference T, = 85 ms. Fig. 1b demonstrates the T, estimate MEEs against
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the PCRBs for T, = [30,400] ms with reference T, = 1500 ms. The shaded regions correspond to the WM/GM. ‘I
Including the larger T, and T, ranges examines the estimates’ stabilities for diagnosing early brain tissue RRRRERIN I [ | [ I |1 I I
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degenerations and also more advanced damage. Figs. 1c-d show that T; and T, are generally over-estimated, but the 5 100 150 200 250
Rbiases are controlled within [-0.1%, 0.2%] for brain WM/GM regions. The last three columns in Table 1 give the Fig.1 Monte Carlo simulated T; and T,
average PCRBs against the average MEEs and Rbiases within the WM/GM T,/T, ranges. Estimate precisions (a-b) and accuracies (c-d)
Table 1 Optimized sequence parameters and performances for different relaxometry approaches
Approach Optimized parameters (ms) TNR Efficiency Equi. MC SNR  PCRB (%) MC MEE (%) MC Rbias (%)
Conv. IR TI=[0:450:1800], W = 10000 I'=17.07 42.84 P, =1.85 M, =1.86 R, =0.019
Fast IR TI = [0:303:2424], TR = 6722 I =19.57 40.66 P =1.62 M, =1.62 R, =0.0005
SR TR =[0:620:6820] =752 49.43 P =421 M, =4.24 R, =0.087
LL a =30 t =[206:206:3090], TR = 8900 I'=2132 105.99 P, =148 M, =149 R; =0.009
SEIR TRRr=2994, TI = 1270, TRsg=2942, TE = 17 I =2256,1,=8.78 117.80 Pi=141,P,=3.62 M,;=141,M,=3.63 R;=0.008,R,=0.13
DESPOT  aspgr = 8.6° asspp=[13.9°, 57.8°], TRsper = 6.8, TRsspp=3.4 T} =23.29,T,=24.64 2711.63 P;=136,P,=128 M,;=137,M,=128 R;=0.012,R,=0.01

Discussion and Conclusion: Both Fig.1 and Table 1 show for all tested relaxometry approaches, the MEEs closely follow the CRB for all tested T; and T, ranges. This
confirms that the CRB is a tight estimation bound and reliably predicts the T;/T, estimation performances. Among all approaches, DESPOT has the highest T; and
T, estimate efficiency largely due to its very short sequence time, but suffers from a relatively high Rbias and therefore low accuracy in T; mapping. SEIR, LL and fast
IR have similar T; estimate efficiencies. Conventional IR requires a long sequence time and SR has very low T, estimate efficiency and therefore are both not
recommended for T; mapping. This is the first time the CRB is utilized in defining the T; and T, mapping efficiencies, which provides a consistent and more complete
framework evaluating different relaxometry approaches on their T; and T, mapping capabilities in quantitative MRI.
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