
Fig.1. Mean and 
standard deviation 
of fs obtained using 
deterministic or 
MC integration  
for three different 
SNRs. 

Fig.2. Relative bias 
and dispersion in the 
estimation of fs using 
the MEAN, MAP and 
SRC methods. Results 
are presented for 
several combinations 
of SNR and fs values. 
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Target Audience: scientists interested in the Multi-component Driven Equilibrium Single Pulse Observation of T1 and T2 (mcDESPOT) approach to tissue analysis and 
Bayesian inference for parameter estimation. 
Purpose: mcDESPOT has been proposed as a rapid approach for multicomponent relaxometry [1]. It has been applied to map myelin-bound water in brain [2] and 
proteoglycan-associated water in knee cartilage [3]. However, even for 2-pool models, the dimensionality of fit parameter space remains relatively high. This renders 
parameter estimation difficult due to the presence of multiple local minima and the flattening of the fit residual energy surface. Stochastic region contraction (SRC) has 
been proposed as an efficient approach to the extraction of system parameters from mcDESPOT data [4]. However, the SRC algorithm is very sensitive to initial 
parameter conditions in the presence of a complex structure of local minima, especially at low-to-moderate signal-to-noise ratios (SNR). Several previous studies have 
established the potential benefit of the Bayesian probability approach in parameter estimation [5-6]. Indeed, unlike non-linear least squares-based approaches, Bayesian 
inference does not require initial estimates and provides a natural framework for the incorporation of prior knowledge when available. These characteristics arise 
fundamentally from the process of marginalization over nuisance parameters, defined as parameters besides the one under current consideration. In this study, we 
investigated the accuracy and precision of component fraction determination from a bicomponent mcDESPOT model using two Bayesian methods, and compared the 
results with those derived using the SRC algorithm. 
Theory and Methods: Bayesian Monte Carlo mcDESPOT (BMC-mcDESPOT): mcDESPOT uses a combination of L SPGR and M bSSFP images obtained at different 
flip angles. bSSFP images are typically acquired for two different radiofrequency (RF) phase cycles (bSSFP1, bSSFP2). Under the assumption of two on-resonance non-
exchanging pools, and by normalizing the SPGR, bSSFP1 and bSSFP2 datasets by their respective mean values, the vector, ઩, of free system parameters to be obtained 
is given by ઩ ൌ ൫ ௦݂ ଶܶ,௦ ଶܶ,௟  ଵܶ,௦ ଵܶ,௟൯, where the subscripts s and l stand for the short (rapidly relaxing) and long (slowly relaxing) tissue components. The formal 
statement of Bayes theorem for the probability distribution of the unknown parameters is Pሺ઩ | ܁, ሻߪ ൌ Pሺ઩ሻ ܮሺ܁ | ઩, ોሻ Pሺ܁ሻ⁄ , where Pሺ઩ሻ ן 1 ઩⁄  represents a priori 

parameter distributions given by the Jeffreys prior, ܮሺ܁ | ઩, ોሻ ן ∏ ݌ݔ݁ ቆെ ൫ௌೄುಸೃ೗ ିெೄುಸೃ೗ ሺ઩ሻ ൯మଶఙೄುಸೃమ ቇ ∏ ݌ݔ݁ ቆെ ቀௌ್ೄೄಷುభ೘ ିெ್ೄೄಷುభ೘ ሺ઩ሻ ቁమଶఙ್ೄೄಷುభమ െ ቀௌ್ೄೄಷುమ೘ ିெ್ೄೄಷುమ೘ ሺ઩ሻ ቁమଶఙ್ೄೄಷುమమ ቇ ெ௠ୀଵ௅௟ୀଵ is the 

likelihood function for obtaining the vector of the measured signal ܁ ൌ ൫ ௌܵ௉ீோ ܵ௕ௌௌி௉భ ܵ௕ௌௌி௉మ൯ given ઩ and ો ൌ ൫ߪௌ௉ீோ ߪ௕ௌௌி௉భ ߪ௕ௌௌி௉మ൯, the vector of known standard 
deviations of the noise in each experiment, and Pሺ܁ሻ ൌ ׬ Pሺ઩ሻ ܮሺ܁ | ઩, ોሻ d઩ is a normalization constant. An estimate, ௦݂෡ , of the short fraction, ௦݂ and hence ௟݂ ൌ ሺ1 െ௦݂ሻ as well, can be derived as the maximum posterior probability (MAP) given by መ݂௦ ൌ arg max௙ೞ ሼPሺ ௦݂ | ܁, ોሻሽ ൌ arg max௙ೞ ൛׬ ׬ ׬ ׬ Pሺ઩ሻ ܮሺ܁ | ઩, ોሻ d ଶܶ,௦d ଶܶ,௟d ଵܶ,௦d ଵܶ,௟ൟ, 
or as the MEAN of the posterior probability given by መ݂௦ ൌ ׬ ௦݂ Pሺ ௦݂ | ܁, ોሻ d ௦݂ ൌ ׬ ௦݂ ׬ ׬ ׬ ,઩ | ܁ሺܮ ሺPሺ઩ሻ׬ ોሻ Pሺ܁ሻ⁄ ሻ d ଶܶ,௦d ଶܶ,௟d ଵܶ,௦d ଵܶ,௟d ௦݂. As can be seen, short 
fraction estimation using either MAP or MEAN methods requires a high dimensional lengthy integration of the posterior distribution. To overcome this difficulty, 
rather than standard deterministic (fully sampled) integrations, we explored the possibility of using Monte Carlo (MC) integration consisting of averaging the posterior 
probability distribution values calculated on a finite random set of parameter combinations.  
Input parameters: For all simulations, the following underlying input parameters were used: T2,s = 15 ms, T2,l = 90 ms, T1,s = 350 ms, T1,l = 1400 ms, TRSPGR = TRbSSFP = 
6 ms, αSPGR = [2 4 6 8 10 12 14 16 18 20]o, αbSSFP = [2 6 14 22 30 38 46 54 62 70]o, and bSSFP RF phase cycling of 0o and 180o. The boundary conditions for the SRC 
algorithm were 0 ≤ fs ≤ 0.4, 2 ms ≤ T2,s ≤ 45 ms, 60 ms ≤ T2,l ≤ 200 ms, 200 ms ≤ T1,s ≤ 500 ms and 500 ms ≤ T1,l ≤ 3000 ms. These boundary conditions were also used 
as limits of the integrals used in the Bayesian-based methods and as ranges for the random sampling needed in the MC integration. Signals were generated with added 
white noise to investigate results across a range of SNR (i.e. SNR = S0 / σ where S0 represents the signal amplitude at echo time of 0 ms).  

Comparisons of the MC and deterministic integration techniques: The MC and deterministic integration techniques for the estimation of ௦݂ were compared at SNR 
values of 500, 1000 and 2000 for ௦݂ ൌ 0.15. For each SNR, results are presented as the mean and standard deviation of the estimated ௦݂ over 400 noise realizations, 
using MAP and MEAN methods described above. Uniform sampling was used for the MC integration. All numerical calculations were performed using MATLAB 
(MathWorks, Natick, MA, USA).  

Comparison of the SRC algorithm and Bayesian-based methods: The performance of the SRC algorithm and Bayesian-based methods (MAP and MEAN) for the 
estimation of ௦݂ was evaluated for different SNR values of 500, 1000 and 2000, and for different ௦݂ values of 0.05, 0.1, 0.15, 0.2 and 0.3. The comparison consisted of 

calculating the relative bias, a measure of accuracy, defined as 100 כ | ௦݂ െ መ݂௦ഥ| ௦݂ൗ , and the relative dispersion, a measure of precision, defined as the relative standard 
deviation, 100 כ SD൫ መ݂௦൯ ௦݂⁄ , over 1000 noise realizations.  

Results and Discussion: Fig.1 shows that MC integration provides very comparable results to those obtained with deterministic integration. Although the number of 
uniform random samples used in the MC integration was relatively high (i.e. N = 300,000), the processing time was greatly reduced (several minutes instead of several 
hours). Further exploration of MC sampling strategies may further define the required number of sampled points to maximize accuracy while maintaining short 
integration times. Fig.2 shows the relative bias and dispersion in the estimation of fs. Overall, both bias and dispersion decrease with increasing SNR or fs. The 
Bayesian-based methods (MEAN or MAP) demonstrate a substantial reduction of both bias and dispersion compared to the SRC algorithm. At low SNR and very small 
short fractions, the MAP method showed more bias but less dispersion than the MEAN method. At high SNR, the SRC was able to perform almost as well as the 
Bayesian MEAN and MAP methods, especially for fs ≥ 0.15.  However, in all cases, the two Bayesian methods out-performed the SRC method. 
Conclusions: Estimation of the short fraction of a bicomponent system from mcDESPOT was markedly improved through use of Bayesian analysis. Further work will 
extend the BMC-mcDESPOT analysis to the estimation of the other system parameters and will include exchange between pools.    
References: [1] Deoni SCL et al. MRM 2008;60:1372-1387. [2] Deoni SCL et al. MRM 2013;70:147-154. [3] Fang L et al. JMRI 2014;39:1191-1197. [4] Berger FM et al. IEEE Trans 
Signal Process 1991;39:2377-2386. [5] Neil JJ and Bretthorst GL. MRM 1993;29:642-647. [6] Bouhrara M et al. MRM 2014 (DOI: 10.1002/mrm.25457).        
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